Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:43:07.323Z Has data issue: false hasContentIssue false

Field Bindweed (Convolvulus arvensis) Control in Early and Late-Planted Processing Tomatoes

Published online by Cambridge University Press:  20 January 2017

Lynn M. Sosnoskie*
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Bradley D. Hanson
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
*
Corresponding author's E-mail: [email protected]

Abstract

Field bindweed is a deep-rooted and drought-tolerant perennial that can be difficult to control once it has become established in specialty crops. Field studies were conducted in 2013 and 2014 to evaluate the efficacy of currently registered preplant (PP), PPI, PRE, and POST herbicides for field bindweed management in both early and late-planted processing tomatoes. Results show that bindweed cover in PPI/PRE programs (trifluralin, alone or in combination with rimsulfuron; S-metolachlor; or sulfentrazone) was reduced > 50% in early planted tomatoes, relative to the no PPI/PRE herbicide treatment (0 to 31% cover at up to 6 wk after transplanting [WAT]). Similar trends were observed with respect to field bindweed density. PP applications of glyphosate to emerged bindweed in late-planted tomatoes, coupled with PPI/PRE herbicide applications, reduced weed cover (1 to 13% at up to 6 WAT) by more than one-half when compared with plots treated with residual herbicides alone (1 to 43% at up to 6 WAT); perennial vine density was also reduced > 50%. PP herbicide burndown applications and the use of residual products can significantly improve the suppression of field bindweed in processing tomato systems. The emergence and vigor of bindweed vines may differ with respect to the timing of transplant operations and should be considered when developing management strategies

Convolvulus arvensis es una maleza perenne con sistema radical profundo y tolerante a la sequía que puede ser difícil de controlar una vez que se ha establecido en cultivos hortícolas. En 2013 y 2014, ser realizaron estudios de campo para evaluar la eficacia de herbicidas actualmente registrados para aplicaciones en presiembra (PP), PPI, PRE, y POST para el manejo de C. arvensis en tomate para procesamiento, plantado temprano y tarde. Los resultados muestran que la cobertura de C. arvensis en programas PPI/PRE (trifluralin, solo o en combinación con rimsulfuron; S-metolachlor; o sulfentrazone) se redujo >50%, en tomates plantados temprano, en relación con tratamientos sin herbicidas PPI/PRE (0 a 31% de cobertura hasta 6 semanas después del trasplante [WAT]). Se observaron tendencias similares con respecto a la densidad de C. arvensis. Las aplicaciones PP de glyphosate a plantas emergidas de C. arvensis en tomates plantados tarde, aunadas a aplicaciones de herbicidas PPI/PRE, redujeron la cobertura de la maleza (1 a 13% hasta 6 WAT) en más de la mitad cuando se comparó con parcelas tratadas con sólo los herbicidas residuales (1 a 43% hasta 6 WAT). La densidad de la enredadera también se redujo >50%. Las aplicaciones de quema con herbicidas PP y el uso de productos residuales puede significar la mejora en la supresión de C. arvensis en sistemas de producción de tomate para procesamiento. La emergencia y el vigor de las enredaderas de C. arvensis podría diferir según el momento de las operaciones de trasplante, y esto debería ser considerado cuando se desarrollan las estrategias de manejo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Darren Robinson, University of Guelph.

References

Literature Cited

Adcock, CW, Foshee, WG III Wehtje, GR, Gilliam, CH (2008) Herbicide combinations in tomato to prevent nutsedge (Cyperus esculentus) punctures in plastic mulch for multi-cropping systems. Weed Technol 22: 136141 Google Scholar
Clausnitzer, H, Singer, M (1997) Intensive land preparation emits respirable dust. Calif Agric 51: 2730.Google Scholar
Clewis, SB, Everman, WJ, Jordan, DL, Wilcut, JW (2007) Weed management in North Carolina peanuts (Arachis hypogaea) with S-metolachlor, diclosulam, flumioxazin and sulfentrazone systems. Weed Technol 21: 629635 Google Scholar
De Gennaro, FP, Weller, SC (1984) Growth and reproductive characteristics of field bindweed (Convolvulus arvensis) biotypes. Weed Sci 32: 525528 Google Scholar
Dall'Armellina, AA, Zimdahl, RL (1989) Effect of watering frequency, drought, and glyphosate on growth of field bindweed (Convolvulus arvensis). Weed Sci 37: 314318 CrossRefGoogle Scholar
Derscheid, LA, Stritzke, JF, Wright, WG (1970) Field bindweed control with cultivation, cropping, and chemicals. Weed Sci 18: 590596 CrossRefGoogle Scholar
Felix, J, Newberry, G (2012) Yellow nutsedge control and reduced tuber production with S-metolachlor, halosulfuron plus dicamba, and glyphosate in furrow-irrigated corn. Weed Technol 26: 213219 Google Scholar
Frazier JC (1943a) Amount, distribution, and seasonal trend of certain organic reserves in the root system of field bindweed, Convolvulus arvensis L. Plant Physiol 18: 167184 CrossRefGoogle Scholar
Frazier JC (1943b) Food reserve depletion and synthesis in field bindweed, Convolvulus arvensis L., as related to 7-day and 14-day intervals of cultivation. Plant Physiol 18: 315323 Google Scholar
Frazier JC (1943c) Nature and rate of development of root system of Convolvulus arvensis . Bot Gaz 104: 417425 Google Scholar
Harr, MJ, Fennimore, SA, McGiffen, ME, Lanini, WT, Bell, CE (2002) Evaluation of preemergence herbicides in vegetable crops. Horttechnology 12: 9599 Google Scholar
Hartz, T, Miyao, G, Mickler, J, LeStrange, M, Stoddard, S, Nunez, J,and Aegerter, B (2008) Processing Tomato Production in California. Richmond, CA: University of California Agriculture and Natural Resources publication 7228. 5 pCrossRefGoogle Scholar
Knezevic, SZ, Datta, A, Scott, J, Klein, RN, Golus, J (2009) Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol 23: 507512 CrossRefGoogle Scholar
Lanini, WT, Miyao, EM (1989) Influence of field bindweed competition on processing tomatoes. Pages 175177 in Proceedings of the Western Society of Weed Science. Honolulu, HI: Western Society of Weed Science Google Scholar
Millhollon, RW (1978) Toxicity of soil incorporated trifluralin to Johnsongrass (Sorghum halepense) rhizomes. Weed Sci 26: 171174 Google Scholar
Mitchell, JP, Klonsky, KM, Miyao, EM, Aegerter, BJ, Shrestha, A, Munk, DS, Hembree, KJ, Madden, NM, Turini, TA (2012) Evolution of conservation tillage systems for processing tomato in California's Central Valley. Horttechnology 22: 617626 CrossRefGoogle Scholar
Mitich, LW (1991) Field bindweed. Weed Technol 5: 913915 Google Scholar
[NASS] U.S. Department of Agriculture National Agricultural Statistics Service (2015) http://www.nass.usda.gov/. Accessed May 15, 2015Google Scholar
Reicosky, DC, Dugas, WA, Torbert, HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Till Res 41: 105118 Google Scholar
Sauerbeck, DR (2001) CO2 emissions and C sequestration by agriculture—perspectives and limitations. Nutr Cycl Agroecosyst 60: 2523–266Google Scholar
Sharma, SD, Singh, M (2007) Effect of timing and rates of application of glyphosate and carfentrazone herbicides and their mixtures on the control of some broadleaf weeds. Hortscience 42: 12211226 Google Scholar
Shrestha, A, Mitchell, JP, Lanini, WT (2007) Sub-surface drip irrigation as a weed management tool for conventional and conservation tillage tomato (Lycopersicum esculentum Mill.) production in semi-arid agroecosystems. J Sustain Agric 31: 91112 Google Scholar
Six, J, Elliott, ET, Paustian, K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63: 13501358 Google Scholar
Standifer, LC, Thomas, CH (1965) Response of Johnsongrass to soil incorporated trifluralin. Weeds 13: 302306 Google Scholar
Sutton, KF, Lanini, WT, Mitchell, JP, Miyao, EM, Shrestha, A (2006) Weed control, yield and quality of processing tomato production under different irrigation, tillage and herbicide systems. Weed Technol 20: 831838 Google Scholar
Swan, DG (1980) Field bindweed, Convolvulus arvensis L. Pullman, WA: Washington State University, College of Agriculture Research Center Bulletin 0888. 8 pGoogle Scholar
Swan, DG, Chancellor, RJ (1976) Regenerative capacity of field bindweed roots. Weed Sci 24: 306308 Google Scholar
Weaver, SE, Riley, WR (1982) The biology of Canadian weeds. 53. Convolvulus arvensis L. Can J Plant Sci 62: 461472 Google Scholar
Westra, P, Chapman, P, Stahlman, PW, Miller, SD, Fay, PK (1992) Field bindweed (Convolvulus arvensis) control with various herbicide combinations. Weed Technol 6: 949955 Google Scholar
Wiese, AF, Lavake, DE (1986) Control of field bindweed (Convolvulus arvensis) with postemergence herbicides. Weed Sci 34: 7780 Google Scholar
Yerkes, CND, Weller, SC (1996) Diluent volume influences susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Technol 10: 565569 Google Scholar