Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:38:37.647Z Has data issue: false hasContentIssue false

Evolved Resistance to Glyphosate in Junglerice (Echinochloa colona) from the Tropical Ord River Region in Australia

Published online by Cambridge University Press:  20 January 2017

Todd A. Gaines*
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, M086, University of Western Australia, Crawley, WA 6009, Australia
Andrew Cripps
Affiliation:
Ord River District Co-operative Ltd., P.O. Box 2120, Kununurra, WA 6743, Australia
Stephen B. Powles
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, M086, University of Western Australia, Crawley, WA 6009, Australia
*
Corresponding author's E-mail: [email protected]

Abstract

The objective of this study was to determine whether a junglerice population from the tropical Ord River region of northwest Australia was glyphosate resistant, and whether alternative herbicides labeled for junglerice control were still effective. Seed samples collected from the field site were initially screened with glyphosate in the glasshouse, and surviving individuals were self-pollinated for subsequent glyphosate dose-response studies. Glyphosate resistance was confirmed, as the suspected resistant population was found to be 8.6-fold more resistant to glyphosate than a susceptible population based on survival (LD50 of 3.72 kg ha−1), and 5.6-fold more resistant based on biomass reduction (GR50 of 1.16 kg ha−1). The glyphosate-resistant population was susceptible to label-recommended doses of all other herbicides assessed, including three acetyl-CoA carboxylase (ACC) –inhibiting herbicides (fluazifop-P, haloxyfop, and sethoxydim), two acetolactate synthase (ALS) –inhibiting herbicides (imazamox and sulfometuron), paraquat, and glufosinate. Glyphosate resistance has previously evolved in numerous species found in glyphosate-resistant cropping systems, no-till chemical fallow, fence line, and perennial crop situations. Here we report the evolution of glyphosate resistance in a cropping system that included annual tillage. The evolution of glyphosate resistance in junglerice from a tropical cropping system further demonstrates the need for improved glyphosate stewardship practices globally.

El objetivo de este estudio fue determinar si una población de Echinochloa colona de la región tropical de Ord River en el noroeste de Australia era resistente a glyphosate, y si herbicidas alternativos con etiqueta para el control de E. colona eran todavía efectivos. Muestras de semillas colectadas en el campo fueron inicialmente tratadas con glyphosate en una invernadero, y los individuos sobrevivientes fueron autopolinizados para estudios posteriores de respuesta a dosis con glyphosate. La resistencia a glyphosate fue confirmada, al determinar que la población que se sospechaba resistente fue 8.6 veces más resistente a glyphosate que la población susceptible según la sobrevivencia (LD50 de 3.72 kg ha−1) y 5.6 veces más resistentes según la reducción de biomasa (GR50 de 1.16 kg ha−1). La población resistente a glyphosate fue susceptible a las dosis recomendadas en etiqueta de todos los demás herbicidas evaluados, incluyendo tres herbicidas inhibidores de acetyl-CoA carboxylase (ACC) (fluazifop-P, haloxyfop y sethoxydim), dos herbicidas inhibidores de acetolactate synthase (ALS) (imazamox y sulfometuron), paraquat y glufosinate. La resistencia a glyphosate ha evolucionado previamente en numerosas especies que se encuentran en sistemas con cultivos resistentes a glyphosate, en barbechos químicos con cero labranza, en cercas y en situaciones con cultivos perennes. Aquí reportamos la evolución de resistencia a glyphosate en un sistema de cultivos que incluía labranza anual. La evolución de resistencia a glyphosate en E. colona en un sistema de cultivos tropical demuestra aún más la necesidad de mejorar las prácticas de buen manejo de glyphosate globalmente.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alarcón-Reverte, R., García, A., and Fischer, A. J. 2012. Evaluating mechanisms of glyphosate resistance in junglerice from California. Weed Sci. Soc. Am. Abstr. 52:434.Google Scholar
Binkholder, K. M., Fresenburg, B. S., Teuton, T. C., Xiong, X., and Smeda, R. J. 2011. Selection of glyphosate-resistant annual bluegrass (Poa annua) on a golf course. Weed Sci. 59:286289.Google Scholar
Cook, T., Storrie, A., Moylan, P., and Adams, B. 2008. Field testing of glyphosate-resistant awnless barnyard grass (Echinochloa colona) in northern NSW. Pages 2023. In van Klinken, R. D., et al. (2008). Proceedings of the 16th Australian Weeds Conference. Queensland Weeds Society, Brisbane, Queensland.Google Scholar
de Carvalho, L. B., Cruz-Hipolito, H., Gonzalez-Torralva, F., da Costa Aguiar Alves, P. L., Christoffoleti, P. J., and de Prado, R. 2011. Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Sci. 59:171176.Google Scholar
Dickson, J. W., Scott, R. C., Burgos, N. R., Salas, R. A., and Smith, K. L. 2011. Confirmation of glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) in Arkansas. Weed Technol. 25:674679.Google Scholar
Dolman, F., Malone, J., Boutsalis, P., Storrie, A., and Preston, C. 2009. Mechanisms of glyphosate resistance in Echinochloa colona from Australia. Weed Sci. Soc. Am. Abstr. 49:286.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.Google Scholar
Gaines, T. A., Ward, S. M., Bukun, B., Preston, C., Leach, J. E., and Westra, P. 2012. Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species. Evol. Appl. 5:2938.Google Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: February 24, 2011.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: The concept and data analysis. Weed Technol. 21:840848.Google Scholar
Light, G. G., Mohammed, M. Y., Dotray, P. A., Chandler, J. M., and Wright, R. J. 2011. Glyphosate-resistant common waterhemp (Amaranthus rudis) confirmed in Texas. Weed Technol. 25:480485.Google Scholar
Mueller, T. C., Barnett, K. A., Brosnan, J. T., and Steckel, L. E. 2011. Glyphosate-resistant goosegrass (Eleusine indica) confirmed in Tennessee. Weed Sci. 59:562566.Google Scholar
Norsworthy, J. K., Riar, D., Jha, P., and Scott, R. C. 2011. Confirmation, control, and physiology of glyphosate-resistant giant ragweed (Ambrosia trifida) in Arkansas. Weed Technol. 25:430435.Google Scholar
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.Google Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 47:405411.Google Scholar
R Development Core Team [R 2010]. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org. Accessed: February 24, 2011.Google Scholar
Riar, D. S., Norsworthy, J. K., Johnson, D. B., Scott, R. C., and Bagavathiannan, M. 2011. Glyphosate resistance in a johnsongrass (Sorghum halepense) biotype from Arkansas. Weed Sci. 59:299304.Google Scholar
Smith, A., Pollock, D., Palmer, D., and Price, A. 2007. Ord River Irrigation Area (ORIA) groundwater drainage and discharge evaluation: Survey of groundwater quality 2006. CSIRO Land and Water Science Report 44/07. http://www.csiro.au. Accessed April 23, 2012.Google Scholar
Storrie, A., Cook, T., Boutsalis, P., Penberthy, D., and Moylan, P. 2008. Glyphosate resistance in awnless barnyard grass (Echinochloa colona (L.) Link) and its implications for Australian farming systems. Pages 74–74. In van Klinken, R. D., et al. (2008). Proceedings of the 16th Australian Weeds Conference. Queensland Weeds Society, Brisbane, Queensland.Google Scholar
Tabacchi, M., Mantegazza, R., Spada, A., and Ferrero, A. 2006. Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields. Weed Sci. 54:10861093.Google Scholar
Thornby, D. F. and Walker, S. R. 2009. Simulating the evolution of glyphosate resistance in grains farming in northern Australia. Ann. Bot. 104:747756.Google Scholar
Werth, J., Thornby, D., Walker, S., Charles, G., and McDonald, C. 2008. Species shift and resistance: Challenges for Australian cotton systems. Pages 2023. In van Klinken, R. D., et al. (2008). Proceedings of the 16th Australian Weeds Conference. Queensland Weeds Society, Brisbane, Queensland.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2007. Transfer of glyphosate resistance: Evidence of hybridization in Conyza (Asteraceae). Am. J. Bot. 94:660673.Google Scholar