Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T09:01:32.166Z Has data issue: false hasContentIssue false

Evaluation of Herbicide Timings for Palmer Amaranth Control in a Stale Seedbed Sweetpotato Production System

Published online by Cambridge University Press:  20 January 2017

Lauren B. Coleman
Affiliation:
North Carolina Agricultural Research Service, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Sushila Chaudhari
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Katherine M. Jennings
Affiliation:
North Carolina Agricultural Research Service, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Jonathan R. Schultheis*
Affiliation:
North Carolina Agricultural Research Service, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Stephen L. Meyers
Affiliation:
North Mississippi Research and Extension Center, Mississippi State University, Pontotoc, MS 38863
David W. Monks
Affiliation:
North Carolina Agricultural Research Service, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Studies were conducted in a stale field production system in 2012 and 2013 to determine the effect of herbicide timing on Palmer amaranth control and ‘Covington’ sweetpotato yield and quality. Treatments consisted of flumioxazin at 72, 90, or 109 g ai ha−1 applied 45 d before transplanting (DBT) or 1 DBT, or sequentially the same rate at 45 DBT followed by (fb) 1 DBT; flumioxazin 109 g ha−1 applied 1 DBT fb S-metolachlor (800 g ai ha−1) at 0, 6 (± 1), or 10 d after treatment (DAT); flumioxazin at 72, 90, or 109 g ha−1 plus clomazone (630 g ai ha−1) applied 45 DBT fb S-metolachlor (800 g ha−1) applied 10 DAT; and fomesafen alone at 280 g ai ha−1 applied 45 DBT. Nontreated weed-free and weedy controls were included for comparison. Flumioxazin application time had a significant effect on Palmer amaranth control and sweetpotato yields, and the effect of flumioxazin rate was not significant. Treatments consisting of sequential application of flumioxazin 45 DBT fb 1 DBT or flumioxazin plus clomazone 45 DBT fb S-metolachlor 10 DAT provided the maximum Palmer amaranth control and sweetpotato yields (jumbo, No. 1, jumbo plus No. 1, marketable) among all treatments. Delayed flumioxazin application timings until 1 DBT allowed Palmer amaranth emergence on stale seedbeds and resulted only in 65, 62, 48, and 17% control at 14, 32, 68, and 109 DAT, respectively. POST transplant S-metolachlor applications following flumioxazin 1 DBT did not improve Palmer amaranth control, because the majority of Palmer amaranth emerged prior to S-metolachlor application. A control program consisting of flumioxazin 109 g ha−1 plus clomazone 630 g ha−1 at 45 DBT fb S-metolachlor 800 g ha−1 at 0 to 10 DAT provides an effective herbicide program for Palmer amaranth control in stale seedbed production systems in North Carolina sweetpotato.

En 2012 y 2013, se realizaron estudios en el sistema de producción en campo con siembra retrasada para determinar el efecto del momento de aplicación de herbicidas sobre el control de A. palmeri y el rendimiento y calidad de la batata ‘Covington’. Los tratamientos consistieron de flumioxazin a 72, 90, ó 109 g ai ha−1 aplicados 45 d antes del trasplante (DBT) o 1 DBT, o secuencialmente con la misma dosis a 45 DBT seguido por (fb) 1 DBT; flumioxazin 109 g ha−1 aplicados 1 DBT fb S-metolachlor (800 g ai ha−1) a 0, 6 (±1), ó 10 d después del tratamiento (DAT); flumioxazin a 72, 90, ó 109 g ha−1 más clomazone (630 g ai ha−1) aplicado 45 DBT fb S-metolachlor (800 g ha−1) aplicado 10 DAT; y fomesafen solo a 280 g ai ha−1 aplicado 45 DBT. Testigos sin tratamiento con y sin malezas fueron incluidos para fines de comparación. El momento de aplicación de flumioxazin tuvo un efecto significativo sobre el control de A. palmeri y los rendimientos de la batata, pero el efecto de la dosis de flumioxazin no fue significativo. Los tratamientos que consistían de aplicaciones secuenciales de flumioxazin 45 DBT fb 1 DBT o flumioxazin más clomazone 45 DBT fb S-metolachlor 10 DAT brindaron el máximo control de A. palmeri y los mayores rendimientos (jumbo, No. 1, jumbo plus No. 1, comercializable) entre todos los tratamientos. El retrasar el momento de aplicación de flumioxazin hasta 1 DBT permitió la emergencia de A. palmeri en las camas de siembra y resultó solamente en 65, 62, 48, y 17% de control a 14, 32, 68, y 109 DAT, respectivamente. Las aplicaciones POST trasplante de S-metolachlor después de flumioxazin 1 DBT no mejoraron el control de A. palmeri, porque la mayoría de las plantas de esta maleza emergieron antes de la aplicación de S-metolachlor. Un programa de control que consista de flumioxazin 109 g ha−1 más clomazone 630 g ha−1 a 45 DBT fb S-metolachlor 800 g ha−1 a 0 a 10 DAT brinda un programa efectivo de control de A. palmeri en sistemas de producción de siembra retrasada en camas de batata en North Carolina.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: W. Carroll Johnson III, USDA-ARS.

References

Literature Cited

Anonymous (2013) Dual Magnum® herbicide label. Greensboro, NC: Syngenta Crop Protection, Inc.Google Scholar
Barkley, SL, Chaudhari, S, Jennings, KM, Schultheis, JR, Meyers, SL, Monks, DW (2016) Fomesafen programs for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol. In press CrossRefGoogle Scholar
Boyd, NS, Brennan, EB, Fennimore, SA (2006) Stale seedbed techniques for organic vegetable production. Weed Technol 20: 10521057 CrossRefGoogle Scholar
Caldwell, B, Mohler, CL (2001) Stale seedbed practices for vegetable production. HortScience 36: 703705 CrossRefGoogle Scholar
Haley, J, Curtis, J (2006) Sweetpotato grower survey report of results for 2005 crop. Report for USDA CSREES grant: Risk Avoidance and Mitigation Program (RAMP): Development of grower decision management tools to reduce risk and enhance sustainability of Southern sweetpotato pest management systems Google Scholar
Heap, IM (2013) The occurrence of herbicide-resistant weeds worldwide. In International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org/summary/home.aspx. Accessed October 2013Google Scholar
Heatherly, LG, Wesley, RA, Elmore, CD, Spurlock, SR (1993) Net returns from stale seedbed plantings of soybean (Glycine max) on clay soil. Weed Technol 7: 972980 CrossRefGoogle Scholar
Hobbs, PR, Sayre, K, Gupta, R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Ser B 363: 543555 CrossRefGoogle ScholarPubMed
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48: 347355 CrossRefGoogle Scholar
Huaman, Z (1992) Systematic botany and morphology of the sweetpotato plant. Technical Information Bulletin 25. Lima, Peru: International Potato Center Google Scholar
Jha, P, Norsworthy, JK (2009) Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci 57: 644651 CrossRefGoogle Scholar
Johnson, WC III Mullinix, BG Jr (1995) Weed management in peanut using stale seedbed techniques. Weed Sci 43: 293297 CrossRefGoogle Scholar
Kassam, A, Friedrich, T, Shaxson, F, Pretty, J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustainability 7: 292320 CrossRefGoogle Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35: 199204 CrossRefGoogle Scholar
Kemble, JM (2012) Vegetable Crop Handbook for the Southeastern United States 2013. 14th edn. Lincolnshire, IL: Vance Publishing Corp. Pp 9697 Google Scholar
Lonsbary, SK, O'sullivan, J, Swanton, CJ (2003) Stale-seedbed as a weed management alternative for machine-harvested cucumbers (Cucumis sativus). Weed Technol 17: 724730 CrossRefGoogle Scholar
Meyers, SL, Jennings, KM, Monks, DW (2013) Herbicide-based weed management programs for Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Technol 27: 331340 CrossRefGoogle Scholar
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010a) Evaluation of flumioxazin and S-metolachlor rate and timing for Palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol 24: 495503 CrossRefGoogle Scholar
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010b) Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci 58: 199203 CrossRefGoogle Scholar
Monks, DW, Jennings, KM, Mitchem, WE (2012) Organic Production—Weed Management on Organic Farms. Raleigh, NC: North Carolina Extension Services. 34 pGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60 (Special Issue): 3162 CrossRefGoogle Scholar
Place, G, Bowman, D, Burton, M, Rutty, T (2008) Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant Soil 307: 179190 CrossRefGoogle Scholar
Riggins, CW, Tranel, PJ (2012) Will the Amaranthus tuberculatus resistance mechanism to PPO-inhibiting herbicides evolve in other Amaranthus species? Int J Agric 2012: 17 Google Scholar
Seem, JE, Creamer, NG, Monks, DW (2003) Critical weed-free period for ‘Beauregard’ sweetpotato (Ipomoea batatas). Weed Technol 17: 686695 CrossRefGoogle Scholar
Steckel, LE, Sprague, CL, Stoller, EW, Wax, LM (2004) Temperature effects on germination of nine Amaranthus species. Weed Sci 52: 217221 CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture (2005) United States standards for grades of sweetpotato. Washington, DC: U.S. Department of Agriculture Google Scholar
[USDA] U.S. Department of Agriculture (2015a) Crop production 2014 summary. http://www.usda.gov/nass/PUBS/TODAYRPT/cropan15.pdf. Accessed May 2015Google Scholar
[USDA] U.S. Department of Agriculture (2015b) Crop values 2014 summary. http://www.nass.usda.gov/Publications/Todays_Reports/reports/cpvl0215.pdf. Accessed May 25, 2015Google Scholar
Walters, SA, Young, BG (2012) Herbicide application timings on weed control and jack-o lantern pumpkin yield. HortTechnology 22: 201206 CrossRefGoogle Scholar
Webster, TM (2010) Weed survey—southern states. Proc. South Weed Sci. Soc. 63: 246257 Google Scholar
Webster, TM (2013) Weed survey—southern states. Proc. South Weed Sci. Soc. 66: 275287 Google Scholar