Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T14:38:00.076Z Has data issue: false hasContentIssue false

Evaluation of Cattle Grazing Distribution in Response to Weed and Legume Removal in Mixed Tall Fescue (Schedonorus phoenix) and Legume Pastures

Published online by Cambridge University Press:  20 January 2017

Bryan C. Sather
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
Robert L. Kallenbach
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
William J. Sexten
Affiliation:
Division of Animal Sciences, S132a ASRC, University of Missouri, Columbia, MO 65211
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, Waters Hall, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected].

Abstract

Grazing experiments were conducted during 2009 and 2010 to investigate the effect of herbicide application and subsequent weed removal on cattle grazing distribution in mixed tall fescue and legume pastures. At each location, herbicide applications were made to one-half of the grazed hectares to remove existing weeds and brush. Weeds and legumes were left nontreated across the remaining half of the grazed hectares at each location. Global positioning system tracking collars were fitted to three beef cows at each site and coordinates from each collar were recorded at 1-h intervals for 3 to 4 mo after herbicide application. At each location, broadleaf weeds were reduced from 1 to 51 kg ha−1, and legumes were completely eliminated in herbicide-treated compared to nontreated portions of the pastures. By the end of the season, the forage grass and legume component of pastures was greater and weed component lower in treated compared to nontreated portions of the pastures. By 3 mo after treatment, the cattle distribution was 1.3 to 5 times greater in herbicide-treated compared to nontreated portions of pastures. Overall, results from these experiments indicate herbicide treatment can increase desirable forage mass and thus modify cattle grazing distribution in pastures.

Durante 2009 y 2010, se realizaron experimentos de pastoreo para investigar el efecto de la aplicación de herbicidas y la subsiguiente remoción de malezas sobre la distribución de pastoreo de ganado en mezclas de Schedonorus phoenix y pasturas leguminosas. En cada sitio, se hicieron aplicaciones de herbicidas en una mitad de las hectáreas pastoreadas para remover malezas y arbustos existentes. Las malezas y leguminosas no fueron tratadas en la mitad restante de las hectáreas pastoreadas en cada sitio. Collares de seguimiento con sistemas de posicionamiento global fueron colocados en tres vacas de engorde en cada sitio y se registraron las coordenadas de cada collar en intervalos de una hora por 3 a 4 meses después de la aplicación del herbicida. En cada sitio, las malezas de hoja ancha se redujeron entre 1 y 51 kg ha−1, y las leguminosas fueron completamente eliminadas en pasturas tratadas con herbicidas, en comparación con las porciones no tratadas. Al final de la temporada, el componente de zacates y leguminosas en las pasturas fue mayor y el componente de malezas menor en las porciones tratadas en comparación con las no tratadas. A tres meses después del tratamiento, la distribución del ganado fue 1.3 a 5 veces mayor en las porciones de pasturas tratadas en comparación con las no tratadas. En general, los resultados de estos experimentos indican que el tratamiento con herbicidas puede incrementar la masa de forrajes deseables y así modificar la distribución de pastoreo del ganado en las pasturas.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bailey, D. W. 2004. Management strategies for optimal grazing distribution and use of arid rangelands. J. Anim. Sci. 82 :147153.Google Scholar
Bailey, D. W. and Jensen, D. 2008. Method of supplementation may affect cattle grazing patterns. Rangeland Ecol. Manag. 61 :131135.Google Scholar
Bailey, D. W. and Welling, G. R. 1999. Modification of cattle grazing distribution with dehydrated molasses supplement. J. Range. Manag. 52 :575582.Google Scholar
Barnes, R. F., Nelson, C. J., Collins, M., and Moore, K. J. Forages: An Introduction to Grassland Agriculture. 2003. Ames, IA : Blackwell Publishing. 556 p.Google Scholar
Baskin, J. M. and Baskin, C. C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35 :492498.Google Scholar
Bell, F. R. 1959. The sense of taste in domesticated animals. Vet. Rec. 71 :10711079.Google Scholar
Blackburn, W. H. 1984. Impacts of grazing intensity and specialized grazing systems on watershed characteristics and resources. Pages 927993 in Developing Strategies for Rangeland Management. Washington, DC : Nat. Res. Council/Nat. Acad. Sci.Google Scholar
Bradley, K. W. and Kendig, J. A. 2004. Weed and Brush Control Guide for Forages, Pastures, and Noncropland. Columbia, MO : University of Missouri Extension MP 581. 32 p.Google Scholar
Bovey, R. W. 1987. Weed control problems, approaches, and opportunities in rangeland. Weed Sci. 3 :5791.Google Scholar
Distel, R. A., Laca, E. A., Griggs, T. C., and Demment, M. W. 1995. Patch selection by cattle: maximization of intake rate in horizontally heterogeneous pastures. Appl. Anim. Behav. Sci. 45 :1121.Google Scholar
DiTomaso, J. M. 2000. Invasive weeds in rangelands: species, impacts and management. Weed Sci. 48 :255265.Google Scholar
Frandsen, E. and Boe, D. 1991. Economics of noxious weeds and poisonous plants. Pages 442458 in James, L. F., Evans, J. O., Ralphs, M. H., and Child, R. D., eds. Noxious Range Weeds. San Francisco, CA : Westview Press.Google Scholar
Franklin, D. H., Cabrera, M. L., Byers, H. L., Matthews, M. K., Andrae, J. G., Radcliffe, D. E., McCann, M. A., Kuykendall, H. A., Hoveland, C. S., and Calvert, V. H. 2009. Impact of water troughs on cattle use of riparian zones in the Georgia Piedmont in the United States. J. Anim. Sci. 87 :21512159.Google Scholar
Ganskopp, D. 2001. Manipulating cattle distribution with salt and water in large arid-land pastures: a GPS/GIS assessment. Appl. Anim. Behav. Sci. 73 :251262.Google Scholar
Green, J. D. and Martin, J. R. 1998. Weed management in grass pastures, hayfields, and fencerows, AGR-172. Lexington, KY : University of Kentucky, College of Agriculture. 16 p.Google Scholar
Gregorini, P., Clark, C., McLeod, K., Glassey, C., Romera, A., and Jago, J. 2011. Feeding station behavior of grazing dairy cows in response to restriction of time at pasture. Livest. Sci. 137 :287291.Google Scholar
Haan, M. M., Russell, J. R., Davis, J. D., and Morrical, D. G. 2010. Grazing management and microclimate effects on cattle distribution relative to a cool season pasture stream. Rangel. Ecol. Manag. 63 :572580.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47 :578584.Google Scholar
Hodgson, J. and Brookes, I. M. 1999. Nutrition of grazing animals. Pages 117132 in White, J. and Hodgson, J., eds. New Zealand Pasture and Crop Science. Auckland, New Zealand : Oxford University Press.Google Scholar
Kauffman, J. B., Krueger, W. C., and Vavra, M. 1983. Impacts of cattle grazing streambanks in northeastern Oregon. J. Range Manag. 36 :683685.Google Scholar
Lyons, R. K. and Machen, R. V. 2001. Livestock grazing distribution: considerations and management, L-5409. College Station, TX : AgriLife Extension. 6 p.Google Scholar
Marten, G. C. 1978. The animal–plant complex in forage palatability phenomena. J. Anim. Sci. 46 :14701477.Google Scholar
Marten, G. C. and Andersen, R. N. 1975. Forage nutritive value and palatability of 12 common annual weeds. Crop Sci. 15 :821827.Google Scholar
Miller, D. A. and Nelson, C. J. 2003. Forage improvement and seed production. Pages 339362 in Barnes, R. F., Nelson, C. J., Collins, M., and Moore, K. J., eds. Forages: An Introduction to Grassland Agriculture. Ames, IA : Blackwell.Google Scholar
Olsen, B. E. 1999. Manipulating diet selection to control weeds. Pages 3644 in Launchbaugh, K. L., Sanders, K. D., and Mosley, J. C., eds. Grazing Behavior of Livestock and Wildlife, Idaho Forest, Wildlife, and Range Exp. Sta. Bull. 70. Moscow, ID : University of Idaho.Google Scholar
Pandey, V., Kiker, G. A., Campbell, K. L., Williams, M. J., and Coleman, S. W. 2009. GPS monitoring of cattle location near water features in South Florida. Appl. Eng. Agric. 25 :551562.Google Scholar
Parsons, A. J., Thornley, J. H. H., Newman, J. A., and Penning, P. D. 1994. A mechanistic model of some physical determinants of intake rate and diet selection in a two-species temperate grassland sward. Funct. Ecol. 8 :187204.Google Scholar
Payne, K. K. and Bradley, K. W. 2010. Herbicidal control of tall goldenrod in tall fescue hayfields. Forage Grazinglands DOI: .Google Scholar
Payne, K. K., Sleugh, B. B., and Bradley, K. W. 2010. Impact of herbicides and application timing on weed control, yield, and nutritive value of tall fescue pastures and hayfields. Weed Technol. 24 :515522.Google Scholar
Provenza, F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48 :218.Google Scholar
Rosenbaum, K. K., Bradley, K. W., and Roberts, C. A. 2011. Influence of increasing common ragweed ( Ambrosia artemisiifolia) or common cocklebur (Xanthium strumarium) densities on forage nutritive value and yield in tall fescue pastures and hay fields. Weed Technol. 25 :222229.Google Scholar
[SAS] SAS Institute. 2009. SAS/STAT User's Guide, Version 9.2. Cary, NC : SAS.Google Scholar
Thompson, A., Saunders, A. E., and Martin, P. 1987. The effect of nodding thistle (Carduus nutans) on pasture production. Proc. 40th N. Z. Weed Pest Control Conf. 40 :2225.Google Scholar
Tomkins, N. and O'Reagain, P. 2007. Global positioning systems indicate landscape preferences of cattle in the subtropical savannas. Rangeland J. 29 :217222.Google Scholar
Unger, E. D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., and Ganskopp, D. 2005. Inference of animal activity from GPS collar data on free-ranging cattle. Rangeland Ecol. Manage. 58 :256266.Google Scholar
Watson, V. H. 1976. Weed control and nutritional benefits of Banvel and Weedmaster in warm season grass pastures. Proceedings 29th Annual Meeting Southern Weed Science Society 142.Google Scholar