Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T20:46:16.490Z Has data issue: false hasContentIssue false

Establishing the Geographical Distribution and Level of Acetolactate Synthase Resistance of Palmer Amaranth (Amaranthus palmeri) Accessions in Georgia

Published online by Cambridge University Press:  20 January 2017

Aaron M. Wise
Affiliation:
Southeast AG Research Inc., 86 Jim Moore Road, Chula, GA 31733
Timothy L. Grey*
Affiliation:
Department of Crop and Soil Sciences, The University of Georgia, 115 Coastal Way, P.O. Box 748, Tifton GA 31794
Eric P. Prostko
Affiliation:
Department of Crop and Soil Sciences, The University of Georgia, 115 Coastal Way, P.O. Box 748, Tifton GA 31794
William K. Vencill
Affiliation:
Department of Crop and Soil Sciences, The University of Georgia, 120 Carlton Street, Athens GA 30602
Theodore M. Webster
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Tifton, GA 31794
*
Corresponding author's E-mail: [email protected].

Abstract

Palmer amaranth resistance to acetolactate synthase (ALS)–inhibiting herbicides was first identified in Georgia in 2000. Since then, complaints from peanut producers have increased concerning failure of ALS herbicides in controlling Palmer amaranth. Because efficacy of ALS herbicides can be compromised under adverse conditions, seeds from Palmer amaranth plants that escaped weed control were collected across the peanut-growing region in Georgia to investigate the cause of these reported failures. Greenhouse and growth-chamber studies were conducted using these seeds to evaluate whether weed escapes were a result of Palmer amaranth resistance to ALS herbicides. Each of the 61 accessions collected across Georgia exhibited varying levels of resistance to imazapic applied POST (< 55% control, relative to ALS-susceptible Palmer amaranth). Subsamples of the accessions were evaluated for their response to imazapic rates, which indicated variable levels of resistance across Palmer amaranth accessions. The rate of imazapic that provided 50% reduction in Palmer amaranth plant biomass (I50) for the known susceptible biotype was 0.9 g/ha of imazapic. Of the 10 accessions evaluated, 8 of them had I50 values that ranged from 3 to 297 g/ha of imazapic. The other two accessions could not be fit to the log-logistic dose–response curve and had undeterminable I50 values because of high levels of ALS resistance (> 1,400 g/ha of imazapic). Herbicide cross-resistance experiments indicated that 30 accessions were resistant to the ALS herbicides imazapic, chlorimuron, pyrithiobac, and diclosulam at the recommended field-use rates. However, each of these 30 accessions was susceptible to glyphosate. These data demonstrate that ALS-resistant Palmer amaranth occurs throughout the peanut-growing region of Georgia. Growers in Georgia will need to alter their weed-control programs in peanut to include herbicides with multiple modes of action that do not rely on ALS herbicides for effective Palmer amaranth control.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Amaranthus palmeri), and common waterhemp (Amaranthus rudis) in soybean. Weed Sci 51:3743.CrossRefGoogle Scholar
Blair, A. M. and Martin, T. D. 1998. A review of the activity, fate, and mode of action of sulfonylurea herbicides. Pestic. Sci 22:195219.CrossRefGoogle Scholar
Bond, J. A., Oliver, L. R., and Stephenson, D. O. IV. 2006. Comparative growth of Palmer amaranth (Amaranthus palmeri) accessions. Weed Sci 54:121126.CrossRefGoogle Scholar
Burgos, N. R., Yong-In, K., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibitor herbicides. Pest. Manag. Sci 57:449457.CrossRefGoogle ScholarPubMed
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol 21:367371.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hannah, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626.CrossRefGoogle Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth. Weed Sci 51:312318.CrossRefGoogle Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a sonoran desert summer annual. Oecologia 57:107112.CrossRefGoogle Scholar
Falk, J. S., Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2005. Survey of common waterhemp (Amaranthus rudis) response to Protox- and ALS-inhibiting herbicides in northest Kansas. Weed Technol 19:838846.CrossRefGoogle Scholar
Ferguson, G. M., Hamill, A. S., and Tardif, F. J. 2001. ALS inhibitor resistance in populations of Powell amaranth and redroot pigweed. Weed Sci 49:448453.CrossRefGoogle Scholar
Fletcher, J. S., Phleeger, T. G., and Ratsch, H. C. 1993. Potential environmental risks with new sulfonylurea herdicides. Environ. Sci. Technol 27:22502252.CrossRefGoogle Scholar
Franseen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and geneflow of ALS resistence in Amaranthus species. Weed Sci 49:598606.CrossRefGoogle Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol 11:132137.CrossRefGoogle Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol 6:587591.CrossRefGoogle Scholar
Heap, I. 2009. The international survey of herbicide resistant weeds. Online at www.weedscience.org. Accessed March 23, 2009.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci 48:347355.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp(Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523527.CrossRefGoogle Scholar
Manley, B. S., Singh, B. K., Shaner, D. L., and Wilson, H. P. 1999. Imidazoline resistance in smooth pigweed (Amaranthus hybridus) is due to an altered acetolactate synthase. Weed Technol 13:697705.CrossRefGoogle Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. Jr. 2001. Interference of Palmer amaranth in corn. Weed Sci 49:202208.CrossRefGoogle Scholar
MacRae, A. W., Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and Kichler, J. M. 2008. Glyphsosate-resistant Palmer amaranth competition with Roundup Ready cotton. Proc. Beltwide Cotton conf., Nashville, TN. 8–11 Jan. 2008. Natl. Cotton Counc. Am., Memphis, TN. 1696.Google Scholar
Maertens, K. D., Sprague, C. L., Tranel, P. J., and Hines, R. A. 2004. Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides. Weed Res 44:2126.CrossRefGoogle Scholar
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardiff, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and powell amaranth (Amaranthus powellii). Weed Sci 53:1722.CrossRefGoogle Scholar
Morgan, G. D., Bauman, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer Amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol 15:408412.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113.CrossRefGoogle Scholar
Patzoldt, W. L. and Tranel, P. J. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci 55:421428.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2002. An Illinois water hemp biotype with resistance to PPO, ALS and PSII inhibitors. Proc. North Central Weed Sci. Soc 57:161.Google Scholar
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol 13:632635.CrossRefGoogle Scholar
Poston, D. H., Wilson, H. P., and Hines, T. E. 2000. Imidazolinone resistance in several Amaranthus hybridus populations. Weed Sci 508513.CrossRefGoogle Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci 47:305309.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139. In Powles, S. B. and Holtum, J. A. M. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
[SAS] Statistical analysis Systems, 1999. SAS/STAT User's Guide, Version 8. Cary, NC: Statistical Analysis System Institute Inc. 3884.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fruerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.CrossRefGoogle Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidiazolinones: potent inhibitors of acetohydroxy acid synthase. Plant Physiol 76:545546.CrossRefGoogle Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol 14:122126.CrossRefGoogle Scholar
Sosnoskie, L. M., Webster, T. M., Kichler, J. M., MacRae, A. W., and Culpepper, A. S. 2007. An estimation of pollen flight time and dispersal distance for glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Proc South. Weed Sci. Soc 60:229.Google Scholar
Sprague, C. L., Stollier, E. W., and Wax, L. M. 1997. Response to an acetolactate synthase-resistant biotype of Amaranthus rudis to selected ALS-inhibiting and alternative herbicides. Weed Res 37:93101.CrossRefGoogle Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol 22:119123.CrossRefGoogle Scholar
Steckel, L. E. 2007. The dioecious amaranthus spp.: here to stay. Weed Technol 21:567570.CrossRefGoogle Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common water hemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364.CrossRefGoogle Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.CrossRefGoogle Scholar
Tranel, P. J., Wassom, J. J., Jeschke, M. R., and Rayburn, A. L. 2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet 105:674679.CrossRefGoogle ScholarPubMed
Vencill, W. K., Grey, T. L., Culpepper, A. S., Gaines, C., and Westra, P. 2008. Herbicide resistance in the Amaranthaceae. J. Plant Diseases and Protection Special Issue XXI:4144.Google Scholar
Vencill, W. K., Prostko, E. P., and Webster, T. E. 2002. Is Palmer amaranth (Amaranthus palmeri) resistant to ALS and dinitroaniline herbicides? Proc South. Weed Sci. Soc 55:189.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A Survey of Weeds in Various Crops in Georgia. Weed Technol 15:771790.CrossRefGoogle Scholar
Webster, T. M. 2005. Weed Survey-Southern States: Broadleaf cross subsection. Pages 291306. in. Proceedings South. Weed Sci. Soc., Vol. 58. Charlotte, NC: SWSS.Google Scholar
Zhao, G. F., Yang, H. Z., and Li, Y. H. 1999. The synthesis of novel acetolactate synthase inhibitors,-(asymmetrically distributed phosporyl)-N′_(4,6dimethoxypyrimidin-2yl) ureas. Heteroatom Chem 10/3:237241.3.0.CO;2-J>CrossRefGoogle Scholar