Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T20:07:23.680Z Has data issue: false hasContentIssue false

EPSPS Gene Amplification is Present in the Majority of Glyphosate-Resistant Illinois Waterhemp (Amaranthus tuberculatus) Populations

Published online by Cambridge University Press:  20 January 2017

Laura A. Chatham
Affiliation:
(ORCID: 0000-0003-0666-4564), Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Chenxi Wu
Affiliation:
(ORCID: 0000-0003-0666-4564), Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Chance W. Riggins
Affiliation:
(ORCID: 0000-0003-0666-4564), Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Aaron G. Hager
Affiliation:
(ORCID: 0000-0003-0666-4564), Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Bryan G. Young
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Gordon K. Roskamp
Affiliation:
Department of Agriculture, Western Illinois University, Macomb, IL 61455
Patrick J. Tranel*
Affiliation:
(ORCID: 0000-0003-0666-4564), Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the frequency of glyphosate-resistant waterhemp increasing throughout the Midwest, the identification of resistant populations has become important for managing this species. However, high-throughput screening for glyphosate resistance in the greenhouse is tedious and inefficient. Research was conducted to document the occurrence of glyphosate-resistant waterhemp throughout the state of Illinois, and to determine whether a molecular assay for 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS) gene amplification can be used as an alternative means to detect resistant populations. Populations throughout the state of Illinois were collected in 2010 and screened for glyphosate resistance using a whole-plant assay in a greenhouse, and survivors were examined for EPSPS gene amplification. Of 80 populations investigated, 22 were glyphosate resistant based on the greenhouse screen, and gene amplification was identified in 20 (91%) of the resistant populations. Although there are multiple mechanisms for glyphosate resistance in waterhemp, a molecular test for EPSPS gene amplification provides a rapid alternative for identification of glyphosate resistance in most populations.

Con el incremento en la frecuencia de Amaranthus tuberculatus resistente a glyphosate a lo largo del Medio oeste, la identificación de poblaciones resistentes se ha hecho importante para el manejo de esta especie. Sin embargo, la evaluación rápida y de cantidades grandes de muestras para detectar resistencia a glyphosate en el invernadero es tediosa e ineficiente. Se realizó una investigación para documentar la frecuencia de A. tuberculatus resistente a glyphosate a lo largo del estado de Illinois, y determinar si una prueba molecular evaluando la amplificación del gen de 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) puede ser usado como una alternativa para detectar poblaciones resistentes. Las poblaciones a lo largo del estado de Illinois fueron colectadas en 2010 y evaluadas por resistencia a glyphosate usando una prueba con plantas enteras en un invernadero, y las plantas sobrevivientes fueron examinadas para detectar la amplificación del gen EPSPS. De las 80 poblaciones investigadas, 22 fueron resistentes a glyphosate con base en la evaluación en el invernadero, y la amplificación del gen se identificó en 20 (91%) de las poblaciones resistentes. Aunque existen múltiples mecanismos de resistencia a glyphosate en A. tuberculatus, una prueba molecular de amplificación del gen EPSPS brinda una alternativa rápida para la identificación de resistencia a glyphosate en la mayoría de las poblaciones.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Baerson, SR, Rodriguez, DJ, Tran, M, Feng, Y, Viest, NA, Dill, GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:12651275 CrossRefGoogle ScholarPubMed
Bell, MA, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 CrossRefGoogle Scholar
Bell, MS, Tranel, PJ, Riggins, CW (2009) Glyphosate resistance in waterhemp: inheritance and EPSPS copy number. North Central Weed Sci Soc Proc 64:100 Google Scholar
Burgos, NR, Tranel, PJ, Streibig, JC, Davis, VM, Shaner, D, Norsworthy, JK, Ritz, C (2013) Review: conformation of resistance to herbicides and evaluation of resistance levels. Weed Sci 61:420 CrossRefGoogle Scholar
Chatham, LA, Riggins, CW, Martin, JR, Kruger, GR, Bradley, KW, Peterson, DE, Jugulam, M, Tranel, P (2013) A multi-state study of the association between glyphosate resistance and EPSPS gene amplification in waterhemp. North Central Weed Sci Soc Proc 68:127 Google Scholar
Chatham, LA, Riggins, C, Owen, MD, Tranel, P (2012) Association of EPSPS gene amplification with glyphosate resistance in waterhemp. North Central Weed Sci Soc Proc 67:50 Google Scholar
Délye, C, Duhoux, A, Pernin, F, Riggins, CW, Tranel, PJ (2014) Research methods in weed science: molecular mechanisms of herbicide resistance. Weed Sci 62:In pressGoogle Scholar
Dill, GM, Jacob, CA, Padgette, SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64: 326331 Google Scholar
Doyle, JJ, Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:1315 Google Scholar
Gaines, TA, Wright, AA, Molin, WT, Lorentz, L, Riggins, CW, Tranel, PJ, Beffa, R, Westra, P, Powles, SB (2013) Identification of genetic elements associated with EPSPS gene amplification. PloS one 8(6): e65819 Google Scholar
Gaines, TA, Zhang, W, Wang, D, Bukun, B, Chisholm, ST, Shaner, DL, Nissen, SJ, Patzoldt, WL, Tranel, PJ, Culpepper, AS, Grey, TL, Webster, TM, Vencill, WK, Sammons, RD, Jiang, J, Preston, C, Leach, JE, Westra, P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc Natl Acad Sci USA 107:10291034 Google Scholar
Ge, X, d'Avignon, DA, Ackerman, JJH, Sammons, RD (2010) Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345348 Google Scholar
Hartl, DL, Clark, AG, eds (1989) Principles of Population Genetics. 2nd edn. Sunderland, MA: Sinauer Associates, Inc. Pp 3134 Google Scholar
Heap, IM (2014) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed May 13, 2014Google Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
Liu, J, Tranel, PJ, Davis, AS (2010) Modeling the spread of glyphosate resistant waterhemp. Proc North Central Weed Sci Soc 65:59 Google Scholar
Lorraine-Colwill, DF, Powles, SB, Hawkes, TR, Hollinshead, PH, Warner, SAJ, Preston, C (2003) Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic Biochem Physiol 74:6272 Google Scholar
Ma, R, Kaundun, SS, Tranel, PJ, Riggins, CW, McGinness, DL, Hager, AG, Hawkes, T, McIndoes, E, Riechers, DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163:363377 Google Scholar
Mohseni-Moghadam, M, Schroeder, K, Ashigh, J (2013) Mechanism of resistance and inheritance in glyphosate resistant Palmer amaranth (Amaranthus palmeri) populations from New Mexico, USA. Weed Sci 61:517523 Google Scholar
Nandula, VK, Ray, JD, Ribeiro, DN, Pand, Z, Reddy, KN (2013) Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci 61:374383 Google Scholar
Riggins, C, Hager, AG, Tranel, P (2012) Three years of testing Illinois waterhemp populations for multiple resistance to glyphosate, PPO inhibitors, and ALS inhibitors. North Central Weed Sci Soc Proc 67:122 Google Scholar
Rosenbaum, KK, Bradley, KW (2013) A survey of glyphosate-resistant waterhemp (Amaranthus rudis) in Missouri soybean fields and prediction of glyphosate resistance in future waterhemp populations based on in-field observations and management practices. Weed Technol 27:656663 Google Scholar
Salas, RA, Dayan, FE, Pan, Z, Watson, SB, Dickson, JW, Scott, RC, Burgos, NR (2012) EPSPS gene amplification in glyphosate-resistant Italian Ryegrass (Lolium perenne ssp. Multiflorum) from Arkansas, USA. Pest Manag Sci 68:12231230 Google Scholar
Schultz, J, Riley, EB, Wait, JD, Bradley, KW (2014) Distribution of multiple herbicide resistance in Missouri waterhemp populations. Weed Sci Soc Am Proc 54:290 Google Scholar
Shaner, DL, Lindenmeyer, RB, Ostlie, MH (2011) What have the mechanism of resistance to glyphosate taught us? Pest Manag Sci 68:39 Google Scholar
Tamura, K, Stecher, G, Peterson, D, Filipski, A, Kumar, S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:27252729 CrossRefGoogle ScholarPubMed
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59:58085812 Google Scholar
VanGessel, M (2001) Glyphosate-resistant horseweed from Delaware. Weed Sci 49: 703705 Google Scholar
Wakelin, AM, Preston, C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432440 Google Scholar
Wiersma, A (2012) Regional Whole Plant and Molecular Response of Kochia scoparia to Glyphosate. . Fort Collins, CO: Colorado State University. 64 pGoogle Scholar