Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T05:34:43.676Z Has data issue: false hasContentIssue false

Effects of Soil vs. Foliar Application of Amicarbazone on Annual Bluegrass (Poa annua)

Published online by Cambridge University Press:  20 January 2017

D. H. Perry*
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
J. S. McElroy
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
R. H. Walker
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: [email protected]

Abstract

Amicarbazone is a photosystem II (PSII) inhibiting herbicide of the triazolinone herbicide family. Greenhouse experiments were conducted to compare the effects of amicarbazone and atrazine on annual bluegrass control and quantum yield (ΦPSII) when applied at three treatment placements (soil-only, foliage-only, and foliage + soil). Herbicide rates for amicarbazone and atrazine were 0.53 and 2.25 kg ha−1, respectively. Amicarbazone applied soil-only and foliage + soil controlled annual bluegrass 57 and 59%, respectively, 1 wk after treatment (WAT). Atrazine applied to foliage + soil controlled annual bluegrass 48% at 1 WAT. All soil-only and foliage + soil treatments were similar 2 WAT. Foliage-only application of amicarbazone provided significantly less control than other amicarbazone treatments throughout the study. Amicarbazone applied soil-only and foliage + soil controlled annual bluegrass 100% at 3 WAT. Soil-only and foliage + soil applications of atrazine and amicarbazone had similar reductions in quantum yield (ΦPSII) at 1 to 3 WAT. Foliar-applied amicarbazone reduced ΦPSII 78, 84, and 86% at 1, 2, and 3 WAT, respectively. The rapid reduction in annual bluegrass ΦPSII and the increase in control resulting from soil contact of amicarbazone indicate root exposure of amicarbazone is beneficial for annual bluegrass control.

Amicarbazone es un herbicida inhibidor del fotosistema II (PSII) de la familia de herbicidas triazolinone. Se realizaron experimentos de invernadero para comparar los efectos de amicarbazone y atrazine en el control de Poa annua y en su rendimiento cuántico (ΦPSII) cuando se aplicaron en tres tipos de tratamiento (solamente al suelo, solamente al follaje, y follaje + suelo). Las dosis de amicarbazone y atrazine fueron 0.53 y 2.25 kg ha−1, respectivamente. Amicarbazone aplicado solamente al suelo y al follaje + suelo controló P. annua 57 y 59%, respectivamente, 1 semana después del tratamiento (WAT). Atrazine aplicado al follaje + suelo controló la maleza antes mencionada 48% 1 WAT. Todos los tratamientos de solamente al suelo y de follaje+suelo fueron similares 2 WAT. A lo largo del estudio, la aplicación solamente al follaje de amicarbazone resultó en significativamente menos control que otros tratamientos con el mismo herbicida. Amicarbazone aplicado solamente al suelo y al follaje + suelo controló P. annua 100% 3 WAT. Las aplicaciones solamente al suelo y follaje + suelo de atrazine y amicarbazone resultaron en reducciones similares en el rendimiento cuántico (ΦPSII) 1 a 3 WAT. Amicarbazone aplicado al follaje redujo ΦPSII 78, 84 y 86% a 1, 2 y 3 WAT, respectivamente. La rápida reducción de ΦPSII en P. annua y el incremento en el control resultante del contacto de amicarbazone en el suelo, indican que la exposición de la raíz al herbicida mejora el control de P. annua.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ali, A. and Machado, V. S. 1981. Rapid detection of ‘triazine resistant’ weeds using chlorophyll fluorescence. Weed Res. 21:191197.Google Scholar
Beard, J. B. 1973. Turfgrass: Science and Culture. Englewood Cliffs, NJ Prentice-Hall.Google Scholar
Belcher, J. and Walker, R. 2009. Annual weed control with amicarbazone and flucarbazone in warm-season turf. Proc. South. Weed Sci. Soc. 62:190.Google Scholar
Dayan, F. E., Trindade, M. L. B., and Velini, E. D. 2009. Amicarbazone, a new photosystem II inhibitor. Weed Sci. 57:579583.Google Scholar
Devine, M., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ Prentice Hall.Google Scholar
Genty, B., Briantais, J-M., and Baker, N. R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 990:8792.Google Scholar
Habash, D., Percival, M. P., and Baker, N. R. 1985. Rapid chlorophyll fluorescence technique for the study of penetration of photosynthetically active herbicides into leaf tissue. Weed Res. 25:389395.Google Scholar
Krause, G. H. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313349.Google Scholar
Maertens, K. D., Sprague, C. L., Tranel, P. J., and Hines, R. A. 2004. Amaranthus hybridus populations resistant to triazine and acetolactase synthase-inhibiting herbicides. Weed Res. 44:2126.Google Scholar
Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51:659668.Google Scholar
McCarty, L. B. 2005. Best Golf Course Management Practices. 2nd ed. Upper Saddle River, NJ Pearson Prentice Hall.Google Scholar
McCullough, P. E., Hart, S. E., Weisenberger, D., and Reicher, Z. J. 2010. Amicarbazone efficacy on annual bluegrass and safety on cool-season turfgrasses. Weed Technol. 24:461470.Google Scholar
Monaco, T. J., Weller, S. C., and Ashton, F. M. 2002. Weed Science Principles and Practices. 4th ed. New York J. Wiley.Google Scholar
Negrisoli, E., Rossi, C. V. S., Velini, E. E., Cavenaghi, a. L., Costa, E. A. D., and Toledo, R. E. B. 2007. Weed control by amicarbazone applied in the presence of sugar-cane straw. Planta Daninha 25:603611.Google Scholar
Philbrook, B. D., Kremer, M., Mueller, K. H., and Deege, R. 1999. BAY MKH 3586—a new herbicide for broad spectrum weed control in corn (maize) and sugarcane. Pages 2934 in Proceedings of the Brighton Crop Protection Conference on Weeds. Alton, Hampshire, UK British Crop Production Council.Google Scholar
Rohacek, K. and Bartak, M. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica. 37:339363.Google Scholar
Rutherford, A. W. and Krieger-Liszkay, A. 2001. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 26:648653.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. Lawrence, KS Weed Science Society of America.Google Scholar
Taiz, L. and Zeiger, E. 2006. Plant Physiology. 4th ed. Sunderland, MA Sinauer. Pp. 125158.Google Scholar
Tyystjarvi, E., Koski, A., Keranen, M., and Nevalainen, O. 1999. The Kautsky curve is a built-in-barcode. Biophys. J. 77:11591167.Google Scholar
Viator, B. J., Griffin, J. L., and Richard, E. P. Jr. 2002. Evaluation of red morningglory (Ipomoea coccinea) for potential atrazine resistance. Weed Technol. 16:96101.Google Scholar
Walker, R. H. and Belcher, J. L. 2009. Annual bluegrass control with amicarbazone in perennial ryegrass overseed. Proc. South. Weed Sci. Soc. 62:191.Google Scholar
Warren, L. S., Yelverton, F. H., and Gannon, T. W. 2009. The effect of various rates and timings of amicarbazone on bentgrass cultivar tolerance and annual bluegrass control. Proc. South. Weed Sci. Soc. 62:386.Google Scholar
Yelverton, F. 2008. Spring Transition from Perennial Ryegrass to Bermudagrass and Poa annua Management. http://www.turffiles.ncsu.edu/PDFFiles/004633/Southern_California_Golf_Course_Superintendents_Association_Manhattan_Beach_CA.pdf.Google Scholar