Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T13:20:06.017Z Has data issue: false hasContentIssue false

Effect of the Presence or Absence of Corn on Common Lambsquarters (Chenopodium album L.) and Barnyardgrass [Echinochloa crus-galli (L.) Beauv.] Emergence

Published online by Cambridge University Press:  20 January 2017

Maryse L. Leblanc
Affiliation:
Institut de Recherche et de Développement en Agroenvironnement, P.O. Box 480, Saint-Hyacinthe, QC, Canada J2S 7B8
Daniel C. Cloutier
Affiliation:
Institut de Malherbologie, P.O. Box 222, Sainte-Anne-de-Bellevue, QC, Canada H9X 3R9
Anne Légère
Affiliation:
Agriculture and Agri-Food Canada, Soils and Crops Research and Development Centre, Sainte-Foy, QC, Canada G1V 2J3
Claudel Lemieux
Affiliation:
Agriculture and Agri-Food Canada, Soils and Crops Research and Development Centre, Sainte-Foy, QC, Canada G1V 2J3
Louis Assémat
Affiliation:
Institut National de Recherche Agronomique, Unité de Malherbologie et Agronomie, 21065 Dijon Cedex, France
Diane L. Benoit
Affiliation:
Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, Saint-Jean-Sur-Richelieu, QC, Canada J3B 3E6
Chantal Hamel
Affiliation:
Department of Natural Resources Sciences, McGill University, Sainte-Anne-deBellevue, QC, Canada H9X 3V9

Abstract

A 3-yr study was conducted to establish if the presence of corn had an effect on the emergence patterns and total weed seedling density under growing conditions in southwestern Québec. Weed seedling emergence was monitored in permanent quadrats throughout the growing season in the presence and absence of growing corn. Common lambsquarters and barnyardgrass were prevalent in most site-years. The presence of corn did not affect the patterns of common lambsquarters and barnyardgrass emergence nor their total weed seedling density except in 1994. Corn canopy was probably not sufficiently developed to affect light levels or soil temperature needed for weed germination and, consequently, seedling emergence. In 1994, in the absence of corn, some soil crusting was observed on a fine-textured soil, and the total number of seedlings was reduced. The results of these weed emergence studies in corn can be extended to other crops growing with wide row spacing and relatively slow canopy closure similar to those of grain corn.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Assémat, L. 1998. Compétivité des mauvaises herbes: définition, limites et perspectives. In Annales de la 17ième Conférence du COLUMA, Journées Internationales sur la Lutte Contre les Mauvaises Herbes. Paris: Association Nationale de Protection des Plantes. pp. 916.Google Scholar
Bethenod, T., Bariac, T., Pot, V., Goujet, R., Gayet, S., and Richard, P. 1998. Détermination de la zone moyenne d'absorption racinaire dans un système plante-adventice en compétition pour l'eau. In Maillard, P. and Bonhomme, R., eds. Fonctionnement Des Peuplements Végétaux Sous Contraintes Environnementales. Versailles, France: INRA Éditions. pp. 445458.Google Scholar
Bootsma, A., Tremblay, G., and Filion, P. 1999. Risk Analysis of Heat Units Available for Corn and Soybean Production in Québec. Technical Bulletin Cat. No. A42-81/1999E. Ottawa, ON, Canada: Eastern Cereal and Oilseed Research Centre, Research Branch, Agriculture and Agri-Food Canada. 35 p.Google Scholar
Bouwmeester, H. J. and Karssen, C. M. 1993. Seasonal periodicity in germination of seeds of Chenopodium album L. Ann. Bot. 72: 463473.CrossRefGoogle Scholar
Chamayou, H. and Legros, J-P. 1989. Les Bases Physiques, Chimiques et Minéralogiques de la Science du Sol. Technique Vivantes (Collection Publiée par l'Agence de Coopération Culturelle et Technique avec la Collaboration du Conseil International de la Langue Française). Paris: Presses Universitaires de France. 594 p.Google Scholar
[CPVQ] Conseil des Productions Végétales du Québec. 1994. Grilles de références en fertilisation. AGDEX 540. Publication 02-9401. 128 p.Google Scholar
Dawson, J. H. and Bruns, V. F. 1962. Emergence of barnyardgrass, green foxtail, and yellow foxtail seedlings from various soil depths. Weeds 10: 136139.CrossRefGoogle Scholar
Donald, W. W. and Eastin, E. F. 1995. Weed management systems for oil seed crops. In Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel Dekker. pp. 343400.Google Scholar
du Croix Sissons, M. J., Van Acker, R. C., Derksen, D. A., and Thomas, A. G. 2000. Depth of seedling recruitment of five weed species measured in situ in conventional- and zero-tillage fields. Weed Sci. 48: 327332.CrossRefGoogle Scholar
Giroux, I. 1999. Contamination de L'eau par les Pesticides dans les Régions de Culture de Maïs et de Soya au Québec, Campagnes D'échantillonnage 1996, 1997 et 1998. Québec, QC, Canada: Ministère de L'Environnement. 84 p.Google Scholar
Gorse, I. 1999. Bilan des Ventes de Pesticides au Québec en 1997. Envirodoq EN950037, PES-14. Québec, QC, Canada: Direction des Politiques du Secteur Agricole, Division des Pesticides, Ministère de L'Environnement. 116 p.Google Scholar
Holt, J. S. 1988. Ecological and physiological characteristics of weeds. In Altieri, M. A. and Liebman, M. Z., eds. Weed Management in Agroecosystems: Ecological approaches. Boca Raton, FL: CRC Press. pp. 722.Google Scholar
Karssen, C. M. 1982. Seasonal patterns of dormancy in weed seeds. In Khan, A. A., ed. The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Amsterdam, Netherlands: Elsevier. pp. 243268.Google Scholar
Lapointe, A-M., Deschêsne, J-M., Gervais, P., and Lemieux, C. 1984. Biologie du chénopode blanc (Chenopodium album): influence du travail du sol sur la levée et de la densité du peuplement sur la croissance. Can. J. Bot. 62: 25872593.CrossRefGoogle Scholar
Leblanc, M. 2001. Modeling Weed Emergence as Influenced by Environmental Conditions in Corn in Southwestern Québec. . McGill University, Montréal, QC, Canada. xvii, 176 p.Google Scholar
Leblanc, M. L., Cloutier, D. C., Hamel, C., and Leroux, G. 1998. Facteurs impliqués dans la levée des mauvaises herbes au champ. Phytoprotection 79: 111127.CrossRefGoogle Scholar
[MAPAQ] Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec. 2001. La Stratégie Phytosanitaire se Poursuit dans le Cadre de la phase III du Plan D'action Saint-Laurent Vision 2000. Web page: http://www.agr.gouv.qc.ca/dgpar/agroenv/strategie-slv.html. Accessed: October 29, 2001.Google Scholar
Mohler, C. L. and Calloway, M. B. 1992. Effects of tillage and mulch on the emergence and survival of weeds in corn. J. Appl. Ecol. 29: 2134.CrossRefGoogle Scholar
Mohler, C. L. and Galford, A. E. 1997. Weed seedling emergence and seed survival: separating the effects of seed position and soil modification by tillage. Weed Res. 37: 147155.CrossRefGoogle Scholar
Mulugeta, D. and Stoltenberg, D. E. 1998. Influence of cohorts on Chenopodium album demography. Weed Sci. 46: 6570.CrossRefGoogle Scholar
Ogg, A. G. and Dawson, J. H. 1984. Time of emergence of eight weed species. Weed Sci. 32: 327335.CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs. 1997. Crop Heat Units for Corn and Other Warm-Season Crops in Ontario. Web page: http://www.gov.on.ca/omafra/english/crops/facts/93-119.htm. Accessed: September 27, 2001.Google Scholar
Oryokot, J. O. E. and Swanton, C. J. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Sci. 45: 120126.CrossRefGoogle Scholar
Phatak, S. C., Bugg, R. L., Sumner, R. L., Gay, J. D., Brunson, K. E., and Chalfant, R. B. 1991. Cover crop effects on weeds, diseases, and insects of vegetable. In Hargrove, W. L., ed. Cover Crops for Clean Water. Ankeny, IA: Soil and Water Conservation Society. pp. 153156.Google Scholar
Power, J. F. and Biederbeck, V. O. 1991. Role of cover crops in integrated crop production systems. In Hargrove, W. L., ed. Cover Crops for Clean Water. Ankeny, IA: Soil and Water Conservation Society. pp. 167176.Google Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. J. 1999. Effect of tillage and Zea mays on Chenopodium album seedling emergence and density. Weed Sci. 47: 551556.CrossRefGoogle Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. J. 2000. Simulation of Chenopodium album emergence. Weed Sci. 48: 217224.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1992. SAS/STAT® User's Guide, Version 6, 4th ed. Cary, NC: Statistical Analysis Systems Institute. 1686 p.Google Scholar
Seavers, G. P. and Wright, K. J. 1999. Crop canopy development and structure influence weed suppression. Weed Res. 39: 319328.CrossRefGoogle Scholar
Spitters, C. J. T. and Aerts, R. 1983. Simulation of competition for light and water in crop–weed associations. Asp. Appl. Biol. 4: 467483.Google Scholar
Varlet-Grancher, , Bonhomme, C. R., and Sinoquet, H. (eds.). 1993. Crop Structure and Light Microclimate: Characterization and Applications. Versailles, France: INRA Editions. 518 p.Google Scholar
Weaver, S. E., Tan, C. S., and Brain, P. 1988. Effect of temperature and soil moisture on time of emergence of tomatoes and four weed species. Can. J. Plant Sci. 68: 877886.CrossRefGoogle Scholar
Wilcut, J. W. and York, A. C. 1995. Weed management systems for grain crops. In Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel Dekker. pp. 401476.Google Scholar
Zimdahl, R. L. 1980. Weed–Crop Competition, a Review. Oregon: International Plant Protection Center, Oregon State University. 196 p.Google Scholar