Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T11:07:45.956Z Has data issue: false hasContentIssue false

Effect of Pendimethalin Formulation and Application Rate on Cotton Fruit Partitioning

Published online by Cambridge University Press:  20 January 2017

Darrin M. Dodds
Affiliation:
Department of Plant and Soil Science, Mississippi State University, 117 Dorman Hall, Box 9555, Mississippi State, MS 39762
Daniel B. Reynolds*
Affiliation:
Department of Plant and Soil Science, Mississippi State University, 117 Dorman Hall, Box 9555, Mississippi State, MS 39762
Jonathan A. Huff
Affiliation:
Department of Plant and Soil Science, Mississippi State University, 117 Dorman Hall, Box 9555, Mississippi State, MS 39762
J. Trenton Irby
Affiliation:
Department of Plant and Soil Science, Mississippi State University, 117 Dorman Hall, Box 9555, Mississippi State, MS 39762
*
Corresponding author's E-mail: [email protected].

Abstract

Because of the development of glyphosate-resistant weed species, the lack of new herbicide chemistry, and the late-season emergence of annual grass species, efforts are underway to expand the use of currently available herbicides for use in cotton. Field studies were conducted in 2005 and 2006 to evaluate the effect of POST-applied pendimethalin formulation and application rate on cotton fruit partitioning. Oil- and water-based pendimethalin formulations as well as S-metolachlor were applied to cotton that had four true leaves. All pendimethalin and S-metolachlor applications included glyphosate for broad-spectrum weed control. Pendimethalin formulation and application rate had no effect on seed-cotton partitioning to horizontal fruiting zones, on second- or third-position horizontal fruiting sites, or on monopodial branches. However, increased seed-cotton partitioned to plants that had lost apical dominance was observed when the water-based pendimethalin formulation was applied at rates of 1.7 kg ai/ha and higher as well as when the oil-based pendimethalin formulation was applied at 3.3 kg ai/ha. Application of water-based pendimethalin at rates of 1.7 and 3.4 kg ai/ha and oil-based pendimethalin at rates of 0.8, 1.7, and 3.3 kg ai/ha resulted in reduced seed-cotton located at position 1 fruiting sites compared with the untreated check. POST application of S-metolachlor had no effect on fruit partitioning to horizontal fruiting positions or vertical fruiting zones. Minor differences in seed-cotton partitioning to cohorts and individual fruiting nodes were observed from application of glyphosate, pendimethalin, and S-metolachlor. However, no differences in seed-cotton yield were observed from application of glyphosate, S-metolachlor, or pendimethalin, regardless of formulation or application rate. POST pendimethalin application at rates less than 1.7 kg ai/ha is relatively safe and should provide cotton producers with an additional tool for herbicide-resistant weeds and late-season annual grasses.

Debido al desarrollo de especies de maleza resistentes a glifosato, a la falta de un nuevo conocimiento químico en la producción de herbicidas y a la emergencia de zacates anuales al final de la época, actualmente hay intentos importantes para expandir el uso de herbicidas ya disponibles en el cultivo de algodón. En 2005 y 2006 se condujeron estudios de campo para evaluar el efecto de la aplicación tardía de pendimetalín en diferentes formulaciones y dosis en el inicio de la fructificación de la bellota de algodón. Igualmente fueron utlilizadas en algodón con 4 hojas formulaciones de pendimetalín en base de agua y aceite, y de S-metolachlor, incluyendo glifosato de amplio espectro para el control de maleza. La fórmula y dosis de pendimetalín no tuvo impacto alguno en el inicio de la producción ni de la primera, segunda o tercera posición de las zonas de fructificación horizontal ni en las ramas monopódicas. Sin embargo, un incremento en la separación o división del fruto fue observado en plantas que habían perdido la dominancia apical, cuando la fórmula de pendimetalín en base de agua fue aplicada en rangos de 1.7 kg ia/ha o más, así como también la fórmula pendimetalín en base de aceite aplicada en dosis de 3.3 ia/ha. Aplicaciones de pendimetalín en base de agua en una dosis de 1.7 y 3.4 kg ia/ha y pendimetalín en base de aceite en dosis de 0.8, 1.7 y 3.3 kg ia/ha dieron como resultado una reducción en la producción de semilla en el primer nivel de fructificación comparado con el testigo no tratado. Aplicaciones postemergentes de S-metolaclor no tuvieron efecto en la separación o división del fruto en las posiciones horizontal o vertical. Diferencias menores fueron observadas en la división o separación de las semillas de algodón, en frutos que están en grupos y en forma individual en los nudos de las plantas, debido a la aplicación de glifosato, pendimetalín y S-metolaclor. Sin embargo, no se observaron diferencias en los rendimientos de semilla de algodón, debido a la aplicación de glifosato, S-metolaclor, o pendimetalín, independientemente de la fórmula y la dosis de aplicación. La aplicación postemergente de pendimetalín en dosis menores de 1.7 kg ia/ha es relativamente segura y se debería proporcionar a los productores de algodón, como una herramienta adicional para el control de malezas resistente a herbicidas y zacates anuales tardíos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abernathy, J. R. and Keeling, J. W. 1979. Efficacy and rotational crop response to levels and dates of dinitroaniline herbicide applications. Weed Sci 27:312317.Google Scholar
Anonymous 2008a. Agricultural Chemical Usage 1996 Field Crops Summary. United States Department of Agriculture—National Agriculture Statistics Service. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//1990s/1997/AgriChemUsFC-09-03-1997.txt. Accessed: August 20, 2008.Google Scholar
Anonymous 2008b. Agricultural Chemical Usage 2007 Field Crops Summary. United States Department of Agriculture—National Agriculture Statistics Service. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//2000s/2008/AgriChemUsFC-05-21-2008.pdf. Accessed: August 20, 2008.Google Scholar
Anonymous 2008c. Pesticide Action Network Pesticides Database—Pesticide Products—Product Name: Prowl H2O Herbicide. http://pesticideinfo.org/Detail_Product.jsp?REG_NR=00024100418&DIST_NR=000241. Accessed: August 25, 2008.Google Scholar
Askew, S. D., Bailey, W. A., Scott, G. H., and Wilcut, J. W. 2002. Economic assessment of weed management for transgenic and nontransgenic cotton in tilled and nontilled systems. Weed Sci 50:512520.Google Scholar
Askew, S. D., Bailey, W. A., and Wilcut, J. W. 1998. Weed management in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Sci. Soc. Am. Abstr 38:4.Google Scholar
Askew, S. D. and Wilcut, J. W. 1999. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol 13:308313.Google Scholar
Batts, R. B., York, A. C., and Yelverton, F. H. 1998. Potential for Cotoran carryover to flue-cured tobacco. Proc. Beltwide Cotton Conf 22:873.Google Scholar
Bond, J. A., Walker, T. W., Bollich, P. K., Koger, C. H., and Gerard, P. D. 2005. Seeding rates for stale seedbed rice production in the midsouthern United States. Agron. J. 97:15601563.Google Scholar
Bond, J. A., Walker, T. W., Ottis, B. V., and Harrell, D. L. 2008. Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars. Agron. J. 100:393397.Google Scholar
Bond, J. A., Walker, T. W., Webster, E. P., Buehring, N. W., and Harrell, D. L. 2007. Rice cultivar response to Penoxsulam. Weed Technol 21:961965.Google Scholar
Brown, S. M. and Culpepper, A. S. 2000. Effects of at-cracking and early post applications of Prowl (pendimethalin) on cotton. Proc. Beltwide Cotton Conf 24:14611462.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two- or three-factor designs. Agron. J. 81:665672.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol 13:411420.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 3738. In Camper, N. D. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society.Google Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci 10:328–228.Google Scholar
Gordon, J. A. and Green, C. J. 1999. Comparative field and greenhouse studies of trifluralin and pendimethalin on cotton growth, development, and nutrient uptake. Proc. Beltwide Cotton Conf 23:536539.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420.Google Scholar
Hamilton, K. C. and Arle, H. F. 1976. Preplanting applications of dinitroanilines in cotton. Weed Sci 24:5153.Google Scholar
Heering, D. C., Voth, R. D., Ferreira, K., and Mills, J. A. 1998. Commercial experience with Roundup Ready cotton in 1997. Proc. Beltwide Cotton Conf 22:851.Google Scholar
Jenkins, J. N., McCarty, J. C., and Parrot, W. L. 1990. Effectiveness of fruiting sites in cotton yield. Crop Sci 30:365369.Google Scholar
Jordan, T. N., Baker, R. S., and Barrentine, W. L. 1978. Comparative toxicity of several dinitroaniline herbicides. Weed Sci 26:7275.Google Scholar
Keeling, J. W. and Abernathy, J. R. 1989. Response of cotton (Gossypium hirsutum) to repeated applications of dinitroaniline herbicides. Weed Technol 3:527530.10.1017/S0890037X00032711Google Scholar
Keeling, J. W., Dotray, P. A., and Abernathy, J. R. 1996. Effects of repeated applications of trifluralin and pendimethalin on cotton (Gossypium hirsutum). Weed Technol 10:295298.Google Scholar
Keeling, J. W., Dotray, P. A., Osborne, T. S., and Asher, B. S. 1998. Annual and perennial weed management strategies in Roundup Ready cotton with Roundup Ultra. Proc. South. Weed Sci. Soc 51:49.Google Scholar
Keeling, J. W., Siders, K. T., and Abernathy, J. R. 1991. Palmer amaranth (Amaranthus palmeri) control in a conservation tillage system for cotton (Gossypium hirsutum). Weed Technol 5:137141.Google Scholar
Kerby, T. A., Keeley, M., and Johnson, S. 1987. Growth and Development of Acala Cotton. Davis, CA: University of California Agriculture Experiment Station Bulletin 1921.Google Scholar
Mitchell, G. A. and Bourland, F. M. 1986. Effects of trifluralin and pendimethalin on cotton emergence and seedling characteristics. Proc. Beltwide Cotton Conf 10:6466.Google Scholar
Ottis, B. V., O'Barr, J. H., McCauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on course-textured soils. Weed Technol 18:10961100.Google Scholar
Richardson, R. J., Wilson, H. P., and Hines, T. E. 2007. Preemergence herbicides followed by trifloxysulfuron postemergence in cotton. Weed Technol 21:16.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Lawrence, KS: Weed Science Society of America.Google Scholar
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci 56:320326.Google Scholar
Shaner, D. L., Tecle, B., and Johnson, D. H. 1998. Mechanisms of selectivity of pendimethalin (Prowl®) and trifluralin (Treflan®) in cotton (Gossypium hirsutum) and weeds. Proc. Beltwide Cotton Conf 22:13991402.Google Scholar
Walker, T. W., Bond, J. A., Ottis, B. V., Gerard, P. D., and Harrell, D. L. 2008. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agron. J. 100:381386.Google Scholar
Walker, T. W., Martin, S. W., and Gerard, P. D. 2006. Grain yield and milling quality response of two rice cultivars to top-dress nitrogen application timings. Agron. J. 98:14951500.Google Scholar
Weller, S. and Shaner, D. 2002. Cell division disruptors and inhibitors. Pages 222257. in. Herbicide Action: An intensive Course on Activity, Selectivity, Behavior, and Fate of Herbicides in Plants and the Environment. West Lafayette, IN: Purdue University Press.Google Scholar
Wilcut, J. W., Coble, H. D., York, A. C., and Monks, D. W. 1996. The Niche for Herbicide-Resistant Crops in U.S. agriculture—Herbicide–Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC. 213230.Google Scholar
Wilcut, J. W., Jordan, D. L., Vencill, W. K., and Richburg, J. S. III. 1997. Weed management in cotton (Gossypium hirsutum) with soil-applied and post-directed herbicides. Weed Technol 11:211226.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems from oil seed crops. Pages 343400. In Smith, A. E. Handbook of Weed Management Systems. New York: Marcel Dekker.Google Scholar
Worley, W. L., McCarty, W. H., Kenty, M. M., and Leon, C. T. 1999. The effects of DNA herbicides on cotton growth and development. Proc. Beltwide Cotton Conf 23:539.Google Scholar
York, A. C. 1993. Peanut response to fluometuron applied to a preceding cotton crop. Peanut Sci 20:111114.Google Scholar
Zhang, W., Webster, E. P., and Leon, C. T. 2005. Response of rice cultivars to V-10029. Weed Technol 19:307311.Google Scholar