Article contents
Effect of Irrigation, Soybean (Glycine max) Density, and Glyphosate on Hemp Sesbania (Sesbania exaltata) and Pitted Morningglory (Ipomoea lacunosa) Interference in Soybean
Published online by Cambridge University Press: 20 January 2017
Abstract
A field experiment was conducted in 1998 and 1999 at Keiser, AR, to evaluate glyphosate timing and soybean population in reducing hemp sesbania and pitted morningglory interference with dryland and irrigated glyphosate-resistant soybean under a narrow row, no-till production system. Soybean densities following emergence were 247,000, 475,000, and 729,000 plants/ha. Glyphosate was applied at 0.56 kg ai/ha at the V2; V4; V2 and V4; and V2, V4, and R2 stages of soybean. In dry portions of the growing season, glyphosate increased moisture availability for dryland soybean because of control of hemp sesbania and pitted morningglory. As soybean population increased from 247,000 to 729,000 plants/ha, pitted morningglory and hemp sesbania control increased from 60 to 91%, respectively, for the V2 glyphosate application. Control of both species at 14 wk after emergence was at least 90% following the V4 alone treatment and sequential applications, with no differences in control among soybean populations. Untreated, irrigated hemp sesbania produced up to 32 million seeds/ha in 1999. Irrigation did not influence pitted morningglory seed production either year, and untreated pitted morningglory produced a maximum of 1 million seeds/ha in 1998 at 247,000 soybean plants/ha. Three sequential applications of glyphosate reduced pitted morningglory seed production to 9,000 seeds/ha and eliminated hemp sesbania seed production. Soybean yielded 1,297 kg/ha greater under irrigated than dryland conditions, whereas increasing soybean density from 247,000 to 729,000 plants/ha resulted in 416 kg/ha improvement in seed yield. At the densities of pitted morningglory and hemp sesbania present in this study, seed yield of drill-seeded soybean can be maximized following a V4 alone treatment or sequential glyphosate applications.
Keywords
- Type
- Research
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 29
- Cited by