Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T17:04:25.720Z Has data issue: false hasContentIssue false

Effect of Herbicide-Treated Irrigation Water on Four Vegetables

Published online by Cambridge University Press:  20 January 2017

Lyn A. Gettys*
Affiliation:
Center for Aquatic and Invasive Plants, University of Florida Institute of Food and Agricultural Sciences, 7922 NW 71 Street, Gainesville FL 32653
William T. Haller
Affiliation:
Department of Agronomy, University of Florida Institute of Food and Agricultural Sciences, P.O. Box 110610, Gainesville FL 32611-0610
*
Corresponding author's E-mail: [email protected]

Abstract

Bodies of water that are treated with herbicides for aquatic weed control are often used as a source of irrigation water by landowners near the water body, but there is little information regarding the effects of experimental aquatic herbicides on common garden plants. Therefore, the goal of these experiments was to identify phytotoxicity of four herbicides on vegetables frequently cultivated by home gardeners. Sweet pepper, zucchini, tomato, and bush bean were irrigated with water containing bispyribac-sodium, quinclorac, topramezone, and trifloxysulfuron-sodium to identify the herbicide concentrations that damage these garden vegetables. Experiments were conducted during 2009 and repeated in 2010. Plants were irrigated four times during an 11-d period with the equivalent of 1.27 cm of treated water during each irrigation, then irrigated with well water until they were harvested 41 d after the first herbicide treatment. Values of the concentration of herbicide expected to reduce treated plants by 10% compared with control plants (EC10) were calculated from components of nonlinear regression. Analysis of visual quality and dry weight data revealed that bush bean was the most sensitive of the vegetable plants to bispyribac-sodium, trifloxysulfuron-sodium, and topramezone, whereas the species most sensitive to quinclorac was zucchini. Exposure of bush bean to 7.1, 0.9, and 1.2 parts per billion (ppb) of bispyribac-sodium, trifloxysulfuron-sodium, and topramezone, respectively, would be expected to cause 10% reductions compared with control plants, whereas exposure of zucchini to as little as 11.0 ppb of quinclorac would be expected to cause a 10% reduction in dry weight.

Los cuerpos de agua que son tratados con herbicidas para control de malezas acuáticas son comúnmente usados como fuente de agua para riego por los dueños de terrenos cercanos al cuerpo de agua. Sin embargo, hay poca información sobre los efectos de herbicidas acuáticos experimentales en plantas de jardín. Así el objetivo de estos experimentos fue identificar la fitotoxicidad de 4 herbicidas sobre vegetales sembrados frecuentemente por jardineros caseros. Chile dulce, zucchini, tomate y frijol arbustivo fueron regados con agua que contenía bispyribac-sodium, quinclorac, topramezone y trifloxysulfuron-sodium para identificar las concentraciones de herbicida que dañan a estos vegetales. Los experimentos fueron realizados durante 2009 y repetidos en 2010. Las plantas fueron regadas cuatro veces durante un período de 11 d con el equivalente a 1.27 cm de agua tratada durante cada riego. Luego fueron regadas con agua de pozo hasta la cosecha 41 d después del primer tratamiento con herbicida. Los valores de EC10 – la concentración esperada del herbicida que reduce el crecimiento de las plantas en 10% al comparar con plantas testigo – fueron calculados a partir de los componentes de regresiones no-lineales. Análisis de calidad visual y datos de peso seco revelaron que el frijol fue el más sensible de los vegetales al bispyribac-sodium, trifloxysulfuron-sodium y topramezone, mientras que el zucchini fue la especie más sensible al quinclorac. La exposición del frijol a 7.1, 0.9 y 1.2 ppb de bispyribac-sodium, trifloxysulfuron-sodium y topramezone, respectivamente, causaría reducciones del 10% comparando con plantas testigo, mientras que la exposición del zucchini a concentraciones tan pequeñas como 11.0 ppb de quinclorac causaría una reducción del 10% en peso seco.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2009. Regiment™ CA herbicide label. Walnut Creek, CA Valent U.S.A. Corp.Google Scholar
Anonymous. 2010. Impact® herbicide label. Los Angeles, CA Amvac Chemical Corp.Google Scholar
Anonymous. 2011. Envoke® herbicide label. Greensboro, NC Syngenta Crop Protection, Inc.Google Scholar
Andrew, W., Haller, W. T., and Shilling, D. G. 2003. Response of St. augustinegrass to fluridone in irrigation water. J. Aquat. Plant Manag. 41:6163.Google Scholar
De Barreda, D. G., Lorenzo, E., Carbonell, E. A., Cases, B., and Muñoz, N. 1993. Use of tomato (Lycopersicon esculentum) seedlings to detect bensulfuron and quinclorac residues in water. Weed Technol. 7:376381.Google Scholar
Gettys, L. A. and Haller, W. T. 2009. Tolerance of selected bedding plants to four herbicides in irrigation water. HortTechnology 19:546552.Google Scholar
Gettys, L. A. and Haller, W. T. 2010. Response of selected foliage plants to four herbicides in irrigation water. HortTechnology 20:921928.Google Scholar
Grossmann, K. 1998. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 46:707716.Google Scholar
Koschnick, T. J., Haller, W. T., and Fox, A. M. 2005a. Turf and ornamental plant tolerances to endothall in irrigation water. II. Turf species. HortTechnology 15:324329.Google Scholar
Koschnick, T. J., Haller, W. T., and Glasgow, L. 2006. Documentation of landoltia (Landoltia punctata) resistance to diquat. Weed Sci. 54:615619.Google Scholar
Koschnick, T. J., Haller, W. T., and MacDonald, G. E. 2005b. Turf and ornamental plant tolerances to endothall in irrigation water. I. Ornamental species. HortTechnology 15:318323.Google Scholar
Lovelace, M. L., Talbert, R. E., Scherder, E. F., and Hoagland, R. E. 2007. Effects of multiple applications of simulated quinclorac drift rates in tomato. Weed Sci. 55:169177.Google Scholar
Michel, A., Arias, R. S., Scheffler, B. E., Duke, S. O., Netherland, M., and Dayan, F. E. 2004. Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol. Ecol. 13:32293237.CrossRefGoogle ScholarPubMed
Mossler, M. and Fishel, F. 2007. Non-food actions. in Chemically Speaking. Gainesville, FL University of Florida IFAS Extension Pesticide Office. March 2007:4.Google Scholar
Mossler, M. and Fishel, F. 2008. Non-food actions. in Chemically Speaking. Gainesville, FL University of Florida IFAS Extension Pesticide Office. March 2008:6.Google Scholar
Mossler, M. and Fishel, F. 2011. Non-food actions. in Chemically Speaking. Gainesville, FL University of Florida IFAS Extension Pesticide Office. May 2011:5.Google Scholar
Mudge, C. R. and Haller, W. T. 2009. Ornamental and row crop susceptibility to flumioxazin in overhead irrigation water. Weed Technol. 23:8993.Google Scholar
Mudge, C. R., Koschnick, T. J., and Haller, W. T. 2007. Ornamental plant susceptibility to diquat in overhead irrigation water. J. Aquat. Plant Manag. 45:4043.Google Scholar
[PMRA] Pest Management Regulatory Agency. 2006. Regulatory note REG2006-09: topramezone. Ottawa, ON Pest Management Regulatory Agency, Health Canada. 97 p. http://www.pmra-arla.gc.ca/english/pdf/reg/reg2006-09-e.pdf Accessed: August 18, 2008.Google Scholar
Taber, H. G. and Lawson, V. 2009. Residual effects of Callisto, Impact and Laudis herbicide on cucumber, pepper, snap bean, and tomato. RFR-A9001. Iowa State University Muscatine Island Research and Demonstration Farm. http://fpr.extension.iastate.edu/pdf/EffectsCallisto.pdf.Google Scholar
U.S. Environmental Protection Agency. 2003. Pesticides: Regulating Pesticides—Pesticide Tolerances. http://www.epa.gov/pesticides/regulating/tolerances.htm. Accessed: August 18, 2008.Google Scholar
U.S. Environmental Protection Agency. 2005. Pesticide Fact Sheet: Topramezone. http://www.epa.gov/opprd001/factsheets/topramezone.pdf. Accessed: August 18, 2008.Google Scholar
Wood, A. 2009. Compendium of Pesticide Common Names. Trifloxysulfuron-sodium. http://www.alanwood.net/pesticides/derivatives/trifloxysulfuron-sodium.html.Google Scholar