Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-13T14:22:17.789Z Has data issue: false hasContentIssue false

Effect of Continuous Imidazolinone Herbicide Use on Yellow Nutsedge (Cyperus esculentus) Populations in Peanut

Published online by Cambridge University Press:  20 January 2017

W. James Grichar*
Affiliation:
Texas Agricultural Experiment Station, Yoakum, TX 77995. E-mail: [email protected]

Abstract

Field experiments were conducted from 1994 through 1996 to evaluate the effects of imazapic applied postemergence (POST) at 0.05 and 0.07 kg ai/ha, imazethapyr applied preplant incorporated (PPI) or POST at 0.07 kg ai/ha, and metolachlor applied PPI at 1.7 kg ai/ha on yellow nutsedge control, nutsedge tuber density, and peanut yield. All herbicides controlled yellow nutsedge at least 75% after 3 yr. Imazapic at 0.05 and 0.07 kg/ha controlled yellow nutsedge more consistently than did imazethapyr or metolachlor. Imazethapyr applied POST controlled yellow nutsedge more effectively than did imazethapyr applied PPI. Yellow nutsedge tuber densities in herbicide-treated plots were 51 to 75% less than in untreated control plots. Plots treated with imazapic, imazethapyr applied POST, and metolachlor resulted in higher peanut yields than did untreated control plots.

Type
Commentary
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, P. A. 1983. Yellow nutsedge (Cyperus esculentus) control, regrowth, and tuber production as affected by herbicides. Weed Sci. 31: 419422.CrossRefGoogle Scholar
Brown, S. M. 1990. Weed Facts: Yellow and Purple Nutsedge. Tifton, GA: Georgia Cooperative Extension Service Bull. 1043. 8 p.Google Scholar
Cardina, J. and Swann, C. W. 1988. Metolachlor effects on peanut growth and development. Peanut Sci. 15: 5760.CrossRefGoogle Scholar
Colvin, D. L. and Brecke, B. J. 1993. Cadre rate and time of application for peanut (Arachis hypogaea) weed control. Proc. South. Weed Sci. Soc. 46: 30.Google Scholar
Dowler, C. C. 1998. Weed survey—southern states. Proc. South. Weed Sci. Soc. 51: 299313.Google Scholar
Gooden, D. T. and Wixson, M. B. 1992. Influence of pursuit and cadre on nutsedge development. Proc. Am. Peanut Educ. Res. Soc. 24: 47.Google Scholar
Grichar, W. J. 1992. Yellow nutsedge (Cyperus esculentus) control in peanuts (Arachis hypogaea). Weed Technol. 6: 108112.CrossRefGoogle Scholar
Grichar, W. J., Boswell, T. E., and Merkle, M. G. 1981. Control of yellow nutsedge with selected herbicides. Texas Agricultural Experiment Station Bull. 3858. 2 p.Google Scholar
Grichar, W. J., Colburn, A. E., and Baumann, P. A. 1996. Yellow nutsedge (Cyperus esculentus) control in peanut (Arachis hypogaea) as influenced by method of metolachlor application. Weed Technol. 10: 278281.CrossRefGoogle Scholar
Grichar, W. J. and Nester, P. R. 1993. Control of nutsedge (Cyperus spp.) in peanut with Cadre. Proc. South. Weed Sci. Soc. 46: 71.Google Scholar
Grichar, W. J. and Nester, P. R. 1997. Nutsedge (Cyperus spp.) control in peanut (Arachis hypogaea) with AC 263,222 and imazethapyr. Weed Technol. 11: 714719.CrossRefGoogle Scholar
Grichar, W. J., Nester, P. R., and Colburn, A. E. 1992. Nutsedge (Cyperus spp.) control in peanuts (Arachis hypogaea) with imazethapyr. Weed Technol. 6: 396400.CrossRefGoogle Scholar
Hauser, E. W. 1965. Preemergence activity of three thiocarbanate herbicides in relation to depth of placement in the soil. Weeds 13: 255257.CrossRefGoogle Scholar
Hauser, E. W., Dowler, C. C., Jellum, M. D., and Cecil, S. R. 1974. Effects of herbicide–crop rotation on nutsedge, annual weeds, and crops. Weed Sci. 22: 172176.CrossRefGoogle Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 1997. Population dynamics of yellow nutsedge (Cyperus esculentus) in cropping systems in the southeastern coastal plain. Weed Sci. 45: 166171.CrossRefGoogle Scholar
Keeling, J. W., Bender, D. A., and Abernathy, J. R. 1990. Yellow nutsedge (Cyperus esculentus) management in transplanted onions (Allium cepa). Weed Technol. 4: 6870.CrossRefGoogle Scholar
Rao, J. 1968. Studies on the development of tubers in nutgrass and their starch content at different soil depths. Madras Agric. J. 55: 1823.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1993. Toxicity of foliar and/or soil applied imazethapyr to purple (Cyperus rotundus) and yellow (C. esculentus) nutsedge. Weed Technol. 7: 900905.CrossRefGoogle Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1994. Toxicity of AC 263,222 to purple (Cyperus rotundus) and yellow nutsedge (C. esculentus). Weed Sci. 42: 398402.CrossRefGoogle Scholar
Richburg, J. S. III, Wilcut, J. W., and Wiley, G. L. 1995. AC 263,222 and imazethapyr rates and mixtures for weed management in peanut (Arachis hypogaea). Weed Technol. 9: 801806.CrossRefGoogle Scholar
Shaner, D. L. 1989. Factors Affecting Soil and Foliar Bioavailability of Imidazolinones. Technical Information Rep., Agricultural Research Division. Princeton, NJ: American Cyanamid. 24 p.Google Scholar
Stoller, E. W. and Sweet, R. D. 1987. Biology and life cycle of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Technol. 1: 6673.CrossRefGoogle Scholar
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23: 215221.CrossRefGoogle Scholar
Walls, F. R. Jr., Muzyk, K. R., Wiley, G., and Taylor, F. 1990. Imazethapyr methods of application for control of nutsedge species (Cyperus spp.) in peanuts. Proc. South. Weed Sci. Soc. 43: 9.Google Scholar
Warren, L. S. Jr. and Coble, H. D. 1999. Managing purple nutsedge (Cyperus rotundus) populations utilizing herbicide strategies and crop rotation sequences. Weed Technol. 13: 494503.CrossRefGoogle Scholar
Weber, J. B. and Peter, C. J. 1982. Absorption, bioactivity, and evaluation of soil tests for alachlor and metolachlor. Weed Sci. 30: 1420.CrossRefGoogle Scholar
Wehtje, G., Wilcut, J. W., Hicks, T. V., and McGuire, J. 1988. Relative tolerance of peanuts to alachlor and metolachlor. Peanut Sci. 15: 5356.CrossRefGoogle Scholar
Wilcut, J. W. and Richburg, J. S. III. 1992. Pursuit and Cadre mixtures for weed control in Georgia peanuts. Proc. Am. Peanut Educ. Res. Soc. 24: 46.Google Scholar
Wilcut, J. W., Richburg, J. S. III, Wiley, G., Walls, F. R. Jr., Jones, S. R., and Iverson, M. J. 1994a. Imidazolinone herbicide systems for peanut (Arachis hypogaea L). Peanut Sci. 21: 2328.CrossRefGoogle Scholar
Wilcut, J. W., Walls, F. R. Jr., and Horton, D. N. 1991. Weed control, yield, and net returns using imazethapyr in peanuts (Arachis hypogaea). Weed Sci. 39: 238242.CrossRefGoogle Scholar
Wilcut, J. W., York, A. C., Grichar, W. J., and Wehtje, G. R. 1995. The biology and management of weeds in peanut (Arachis hypogaea). In Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK: Peanut Research Education Society. pp. 207244.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994b. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 6: 177205.Google Scholar
Wilkinson, R. E. 1988. Carbamothiates. In Kerney, P. C. and Kaufman, D. D., eds. Herbicides and Chemistry, Degradation, and Mode of Action. Volume 3. New York: Marcel Dekker. pp. 245300.Google Scholar
[WSSA]. 1994. Herbicide Handbook. Lawrence, KS: Weed Science Society of America. 352 p.Google Scholar
Young, J. H., Pearson, N. K., Donald, J. O., and Mayfield, W. H. 1982. Harvesting, curing, and energy utilization. In Pattee, H. E. and Young, C. T., eds. Peanut Science and Technology. Yoakum, TX: Peanut Research Education Society. pp. 458487.Google Scholar