Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:11:54.877Z Has data issue: false hasContentIssue false

Effect of Coapplied Glyphosate, Pyrithiobac, Pendimethalin, or S-Metolachlor on Cotton Injury, Growth, and Yield

Published online by Cambridge University Press:  20 January 2017

Daniel O. Stephenson IV*
Affiliation:
Dean Lee Research and Extension Center, Louisiana State University Agricultural Center, 8105 Tom Bowman Drive, Alexandria, LA 71302
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi State University, P.O. Box 197, Stoneville, MS 38776
Randall L. Landry
Affiliation:
Dean Lee Research and Extension Center, Louisiana State University Agricultural Center, 8105 Tom Bowman Drive, Alexandria, LA 71302
H. Matthew Edwards
Affiliation:
Delta Research and Extension Center, Mississippi State University, P.O. Box 197, Stoneville, MS 38776
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate coapplications of glyphosate, pyrithiobac, and residual herbicides on growth and yield of glyphosate-resistant cotton. Treatments were a factorial arrangement of glyphosate (0 and 860 g ae ha−1), pyrithiobac (0 and 470 g ai ha−1), and two residual herbicides (pendimethalin [1,120 g ai ha−1], S-metolachlor [1,070 g ai ha−1], and no residual herbicide). Cotton injury was greatest 3 d after treatment (DAT) and decreased at each evaluation interval until 28 DAT when pyrithiobac was coapplied with glyphosate. Cotton injury ranged from 4 to 17% through 14 DAT when pyrithiobac was applied alone (no residual herbicide) or with pendimethalin, but injury decreased to ≤ 3% after 14 DAT. Cotton injury 3 to 21 DAT following pyrithiobac plus S-metolachlor ranged from 4 to 31%, but S-metolachlor alone injured cotton 1 to 7%. When pyrithiobac was included, cotton injury following S-metolachlor was 3 to 15% greater than that following pendimethalin from 3 to 14 DAT. Pendimethalin did not reduce plant height at 21 or 42 DAT compared with treatments receiving no residual herbicide, but S-metolachlor reduced plant heights 5 and 4% at 21 and 42 DAT, respectively. Although cotton injury was severe in some cases and persisted until 21 DAT, the injury did not cause reductions in yield. This indicates the early-season cotton injury was transient, and cotton was able to recover from the injury with no observed differences in yield.

En 2009 y 2010, se realizaron estudios de campo en Louisiana y Mississippi para evaluar el efecto de co-aplicaciones de glyphosate, pyrithiobac, y herbicidas residuales sobre el crecimiento y el rendimiento del algodón con resistencia a glyphosate. Los tratamientos estuvieron en un arreglo factorial de glyphosate (0 y 860 g ae ha−1), pyrithiobac (0 y 470 g ai ha−1), y tres herbicidas residuales (pendimethalin [1,120 g ai ha−1], S-metolachlor [1,070 g ai ha−1], y sin herbicida residual). Cuando pyrithiobac fue co-aplicado con glyphosate, el mayor daño en el algodón se dio 3 días después del tratamiento (DAT) y se redujo en cada intervalo de evaluación hasta 28 DAT. Cuando se aplicó pyrithiobac solo (sin herbicida residual) o con pendimethalin, el daño en el algodón varió de 4 a 17% hasta 14 DAT, pero el daño disminuyó a ≤3% después de 14 DAT. El daño en el algodón a 3 a 21 DAT, después de la aplicación de pyrithiobac más S-metolachlor varió de 4 a 31%, pero S-metolachlor solo dañó el algodón de 1 a 7%. Cuando se incluyó pyrithiobac, el daño en el algodón después de S-metolachlor fue 3 a 15% mayor que después de pendimethalin de 2 a14 DAT. Pendimethalin no redujo la altura de las plantas a 21 ó 42 DAT al compararse con tratamientos sin herbicida residual, pero S-metolachlor redujo la altura de las plantas 5 a 4% a 21 y 42 DAT, respectivamente. Aunque el daño en el algodón fue severo en algunos casos y persistió hasta 21 DAT, el daño no causó reducciones en el rendimiento. Esto indica que el daño en el algodón temprano en la temporada de crecimiento fue transitorio, y que el algodón fue capaz de recuperarse y no mostrar diferencias en el rendimiento.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, R. L., Snipes, C. E., and Crowder, S. H. 1997. Fruiting response of cotton (Gossypium hirsutum) to pyrithiobac. Weed Technol. 11:5963.CrossRefGoogle Scholar
Anonymous. 2012a. Prowl H2O herbicide label. http://www.cdms.net. Accessed July 12, 2012.Google Scholar
Anonymous. 2012b. Staple LX herbicide label. http://ww.cdms.net. Accessed July 12, 2012.Google Scholar
Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.CrossRefGoogle Scholar
Blouin, D. C., Webster, E. P., and Zhang, W. 2004. Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology. Weed Technol. 18:464472.CrossRefGoogle Scholar
Bond, J. A., Dodds, D. M., Eubank, T. W., and Reynolds, D. B. 2011. Herbicide programs for managing glyphosate- and ALS-resistant Palmer amaranth. in Mississippi cotton. Mississippi State, MS Mississippi Agricultural and Forestry Experiment Station: Information Sheet 1354, 2 p.Google Scholar
Burke, I. C., Troxler, S. C., Askew, S. D., Wilcut, J. W., and Smith, W. D. 2005. Weed management systems in glyphosate-resistant cotton. Weed Technol. 19:422429.CrossRefGoogle Scholar
Byrd, J. D. Jr., ed. 2012. 2012 Weed Control Guidelines for Mississippi. Mississippi State, MS Mississippi State University Extension Service and Mississippi Agricultural and Forestry Experimental Station. Pp. 3147.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences in combined analyses of experiments with two- or three-factor treatment designs. Agron. J. 81:655672.Google Scholar
Clewis, S. B., Miller, D. K., Koger, C. H., Baughman, T. A., Price, A. J., Porterfield, D., and Wilcut, J. W. 2008. Weed management and crop response with glyphosate, S-metolachlor, trifloxysulfuron, prometryn, and MSMA in glyphosate-resistant cotton. Weed Technol. 22:160167.CrossRefGoogle Scholar
Costello, R. W., Griffin, J. L., Leonard, B. R., Miller, D. K., and Church, G. E. 2005. Pyrithiobac and insecticide co-application effects on cotton tolerance and broadleaf weed and thrips (Frankliniella spp.) control. Weed Technol. 19:430436.CrossRefGoogle Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.CrossRefGoogle Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol. 18:432436.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Roberts, P., and Whitaker, J. R. 2009. Weed control and crop response to glufosinate to ‘PHY 485 WRF' cotton. Weed Technol. 23:356362.CrossRefGoogle Scholar
Dodds, D. M., Reynolds, D. B., Huff, J. A., and Irby, J. T. 2010. Effect of pendimethalin formulation and application rate on cotton fruit partitioning. Weed Technol. 24:7784.CrossRefGoogle Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci. 10:328338.Google Scholar
Green, J. M. 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 54:108117.CrossRefGoogle Scholar
Green, J. M. and Owen, M. D. K. 2011. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 59:58195829.CrossRefGoogle ScholarPubMed
Grichar, W. J., Besler, B. A., Brewer, K. D., and Minton, B. W. 2004. Using soil-applied herbicides in combination with glyphosate in glyphosate-resistant cotton herbicide program. Crop Prot. 23:10071010.CrossRefGoogle Scholar
Heap, I. 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51:235243.3.0.CO;2-N>CrossRefGoogle Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed October 18, 2012.Google Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. C. 1993a. DPX-PE350 does not interact with early-season insecticides in cotton (Gossypium hirsutum). Weed Technol. 7:9296.CrossRefGoogle ScholarPubMed
Jordan, D. L., Frans, R. E., and McClelland, M. C. 1993b. Cotton (Gossypium hirsutum) response to DPX-PE350 applied postemergence. Weed Technol. 7:159162.CrossRefGoogle Scholar
Kaushik, S., Inderjit, J., Streibig, C., and Cedergreen, N. 2006. Activities of mixtures of soil-applied herbicides with different molecular targets. Pest Manag. Sci. 62:10921097.Google Scholar
Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1993. Effects of DPXPE350 on cotton (Gossypium hirsutum) growth, yield, and fiber quality. Weed Technol. 7:930933.CrossRefGoogle Scholar
Nandula, V. K., Reddy, K. N., Koger, C. H., Poston, D. H., Rimando, A. M., Duke, S. O., Bond, J. A., and Ribeiro, D. N. 2012. Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac. Weed Sci. 60:179188.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Norsworthy, J. K., Ward, S., Shaw, D., Llewellyn, R., Nichols, R., Webster, T. M., Bradley, K., Frisvold, G., Powles, S., Burgos, N., Witt, W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60(Suppl. 1):3162.CrossRefGoogle Scholar
Powles, S. B. 2008. Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks Pest Manag. 12:256259.CrossRefGoogle Scholar
Price, A. J., Koger, C. H., Wilcut, J. W., Miller, D., and van Santen, E. 2008. Efficacy of residual and non-residual herbicides used in cotton production systems when applied with glyphosate, glufosinate, and MSMA. Weed Technol. 22:459466.CrossRefGoogle Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International., Cary, NC SAS Institute.Google Scholar
Scroggs, D. M., Miller, D. K., Griffin, J. L., Steckel, L. E., Blouin, D. C., Stewart, A. M., and Vidrine, P. R. 2007. Reduced-input, postemergence weed control with glyphosate and residual herbicides in second-generation glyphosate-resistant cotton. Weed Technol. 21:9971001.CrossRefGoogle Scholar
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56:320326.Google Scholar
Sosnoskie, L. M., Kichler, J. M., Wallace, R. D., and Culpepper, A. S. 2011. Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci. 59:321325.CrossRefGoogle Scholar
Steckel, L. E., Stephenson, D., Bond, J., Stewart, S. D., and Barnett, K. A. 2012. Evaluation of WideStrike® Flex cotton response to over-the-top glufosinate tank mixtures. J. Cotton Sci. 16:8895.Google Scholar
Webster, T. M. and Sosnoskie, L. M. 2010. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton. Weed Sci. 58:7379.CrossRefGoogle Scholar
Whitaker, J. R., York, A. C., Jordan, D. L., and Culpepper, A. S. 2011. Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol. 25:183191.CrossRefGoogle Scholar
Williams, B. J., ed. 2012. 2012 Louisiana Suggested Chemical Weed Management Guide. Alexandria, LA Louisiana State University Agricultural Center Pub. 1565. Pp. 2633.Google Scholar
Wrubel, R. P. and Gressel, J. 1994. Are herbicides mixtures useful for delaying rapid evolution of resistance—a case study. Weed Technol. 8:635648.CrossRefGoogle Scholar