Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T16:12:47.175Z Has data issue: false hasContentIssue false

Effect of Carrier Water Hardness and Ammonium Sulfate on Efficacy of 2,4-D Choline and Premixed 2,4-D Choline Plus Glyphosate

Published online by Cambridge University Press:  23 February 2017

Pratap Devkota*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054
*
Corresponding author's E-mail: [email protected]

Abstract

Spray water quality is an important consideration for optimizing herbicide efficacy. Hard water cations in the carrier water can reduce herbicide performance. Greenhouse studies were conducted to evaluate the influence of hard water cations and the use of ammonium sulfate (AMS) on the efficacy of 2,4-D choline and premixed 2,4-D choline plus glyphosate for giant ragweed, horseweed, and Palmer amaranth control. Carrier water hardness was established at 0, 200, 400, 600, 800, or 1,000 mg L−1 using CaCl2 and MgSO4, and each hardness level consisted of without or with AMS at 10.2 g L−1. One-third of the proposed use rates of 2,4-D choline at 280 g ae ha−1 and 2,4-D choline plus glyphosate at 266 plus 283 g ae ha−1, respectively, were applied in the study. An increase in carrier water hardness showed a linear trend for reducing 2,4-D choline and 2,4-D choline plus glyphosate efficacy on all weed species evaluated in both studies. The increase in water hardness level reduced giant ragweed control with 2,4-D choline and the premix formulation of 2,4-D choline plus glyphosate to a greater extent without AMS than it did with AMS in the spray solution. Increases in water hardness from 0 to 1,000 mg L−1 reduced weed control 20% or greater with 2,4-D choline. Likewise, the efficacy of the premixed 2,4-D choline plus glyphosate was reduced 21% or greater with increased water hardness from 0 to 1,000 mg L−1. The addition of AMS improved giant ragweed, horseweed, and Palmer amaranth control ≥ 17% and ≥ 10% for 2,4-D choline and 2,4-D choline plus glyphosate application, respectively. The biomass of all weed species was reduced by ≥ 8% and ≥ 5% with 2,4-D choline and 2,4-D choline plus glyphosate application, respectively, when AMS was added to hard water.

La calidad del agua de aplicación es una consideración importante para optimizar la eficacia del herbicida. La presencia de cationes de agua pesada en el agua de mezcla puede reducir el desempeño del herbicida. Se realizaron estudios de invernadero para evaluar la influencia de los cationes de agua pesada y el uso de ammonium sulfate (AMS) sobre la eficacia de 2,4-D choline y la premezcla de 2,4-D más glyphosate para el control de Ambrosia trifida, Conyza canadensis, y Amaranthus palmeri. La dureza del agua de mezcla se estableció en 0, 200, 400, 600, 800, ó 1,000 mg L−1 usando CaCl2 y MgSO4, y cada nivel de dureza fue analizado con y sin AMS a 10.2 g L−1. En el estudio se aplicó un tercio de las dosis propuestas para 2,4-D choline a 280 g ae ha−1 y 2,4-D choline más glyphosate a 266 más 283 g ae ha−1, respectivamente. El incremento en la dureza del agua de mezcla mostró una tendencia lineal a reducir la eficacia de 2,4-D choline y 2,4-D choline más glyphosate sobre todas las especies de malezas evaluadas en ambos estudios. El incremento en el nivel de dureza del agua redujo más el control de A. trifida con 2,4-D choline y con la formulación en premezcla de 2,4-D choline más glyphosate en soluciones de aplicación sin AMS que en las que tenían AMS. El aumentar la dureza del agua de 0 a 1,000 mg L−1 redujo el control de malezas con 2,4-D choline 20% o más. De la misma forma, la eficacia de la premezcla de 2,4-D más glyphosate fue reducida 21% o más al incrementarse la dureza del agua de 0 a 1,000 mg L−1. La adición de AMS mejoró el control de A. trifida, C. canadensis, y A. palmeri ≥17% y ≥10% con aplicaciones de 2,4-D choline y 2,4-D choline más glyphosate, respectivamente. La biomasa de todas las especies de malezas fue reducida ≥8% y ≥5% con aplicaciones de 2,4-D choline y 2,4-D choline más glyphosate, respectivamente, cuando se agregó AMS a agua dura.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate editor for this paper: Ramon G. Leon, University of Florida.

References

Literature Cited

Abouziena, HF, Elmergawi, RA, Sharma, S, Omar, AA, Singh, M (2009) Zinc antagonizes glyphosate on yellow nutsedge (Cyperus esculentus). Weed Sci 57: 1620 Google Scholar
Buhler, DD, Burnside, OC (1983) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31: 163169 Google Scholar
Devkota, P, Johnson, WG (2016) Glufosinate efficacy as influenced by carrier water pH, hardness, foliar fertilizer, and ammonium sulfate. Weed Technol 30: 848859 Google Scholar
Devkota, P, Spaunhorst, DJ, Johnson, WG (2016a) Influence of carrier water pH, hardness, foliar fertilizer, and ammonium sulfate on mesotrione efficacy. Weed Technol 30: 617628 Google Scholar
Devkota, P, Whitford, F, Johnson, WG (2016b) Influence of spray-solution temperature and holding duration on weed control with premixed glyphosate and dicamba. Weed Technol 30: 116122 Google Scholar
Fielding, RJ, Stoller, E W (1990) Effects of additives on efficacy, uptake, and translocation of chlorimuron ethyl-ester. Weed Technol 4: 264271 Google Scholar
Freeze, RA, Cherry, JA (1979) Groundwater. Englewood Cliffs, NJ: Prentice-Hall. 604 pGoogle Scholar
Green, JM, Hale, T (2005) Increasing the biological activity of weak acid herbicides by increasing and decreasing the pH of the spray mixture. J ASTM Int 2: 6271 Google Scholar
Gronwald, JW, Jourdan, SW, Wyse, DL, Somers, DA, Magnusson, MU (1993) Effect of ammonium sulfate on absorption of imazethapyr by quackgrass (Elytrigia repens) and maize (Zea mays) cell suspension cultures. Weed Sci 41: 325334 Google Scholar
Grossmann, K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66: 113120 Google Scholar
Hanson, CL, Rieck, CE (1976) The effect of iron and aluminum on glyphosate toxicity. Page 49 in Proceedings of the Southern Weed Science Society, Volume 29. Las Cruces, NM: SWSS Google Scholar
[IDNR] Indiana Department of Natural Resources (1980) Water Quality. http://www.in.gov/dnr/water/files/804_Water_Quality.pdf. Accessed August 15, 2015Google Scholar
[IDNR] Indiana Department of Natural Resources (1999) Ambient Ground Water Chemistry. http://www.in.gov/dnr/water/5246.htm. Accessed August 10, 2015Google Scholar
Kent, LM, Wills, GD, Shaw, DR (1991) Influence of ammonium sulfate, imazapyr, temperature, and relative humidity on the absorption and translocation of imazethapyr. Weed Sci 39: 412416 Google Scholar
Mueller, TC, Main, CL, Thompson, MA, Steckel, LE (2006) Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol 20: 164171 Google Scholar
Nalewaja, JD, Matysiak, R (1991) Salt antagonism of glyphosate. Weed Sci 39: 622628 Google Scholar
Nalewaja, JD, Matysiak, R (1992) Species differ in response to adjuvants with glyphosate. Weed Technol 6: 561566 Google Scholar
Nalewaja, JD, Matysiak, R (1993) Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol 7: 154158 Google Scholar
Nalewaja, JD, Woznica, Z, Matysiak, R (1991) 2,4-D amine antagonism by salts. Weed Technol 5: 873880 Google Scholar
O’Sullivan, PA, O’Donovan, JT, Hamman, WM (1981) Influence of non-ionic surfactants, ammonium sulfate, and nozzle effects on glyphosate efficacy. Can J Plant Sci 61: 391400 Google Scholar
Patton, AJ, Weisenberger, DV, Johnson, WG (2015) Divalent cations in spray water influence 2,4-D efficacy on dandelion (Taraxacum officinale) and broadleaf plantain (Plantago major). Weed Technol 30: 431440 Google Scholar
Roskamp, JM, Chahal, GS, Johnson, WG (2013) The effect of cations and ammonium sulfate on the efficacy of dicamba and 2,4-D. Weed Technol 27: 7277 Google Scholar
Sandberg, C L, Meggitt, WF, Penner, D (1978) Influence of spray volume and calcium on glyphosate phytotoxicity. Weed Sci 26: 476479 Google Scholar
Shea, PJ, Tupy, DR (1984) Reversal of cation-induced reduction in glyphosate activity with EDTA. Weed Sci 32: 802806 Google Scholar
Shilling, DG, Haller, WT (1989) Interaction effects of diluent pH and calcium content of glyphosate activity on Panicum repens L. (torpedo grass). Weed Res 29: 441448 Google Scholar
Stahlman, PW, Phillips, WM (1979) Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci 27: 3841 Google Scholar
Stahlman, PW, Currie, RS, El-Hamid, MA (1997). Nitrogen carrier and surfactant increase foliar herbicide injury in winter wheat (Triticum aestivum). Weed Technol 11: 712 Google Scholar
Thelen, KD, Jackson, EP, Penner, D (1995) The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43: 541548 Google Scholar
Wanamarta, G, Penner, D, Kells, JJ (1989) The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci 37: 400404 Google Scholar
Wills, GD, McWhorter, CG (1985) Effect of inorganic salts on the toxicity and translocation of glyphosate and MSMA in purple nutsedge (Cyperus rotundus). Weed Sci 33: 755761 Google Scholar
Woznica, Z, Nalewaja, JD, Messersmith, CG, Milkowski, P (2003) Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technol 17: 582588 Google Scholar
Zollinger, RK, Nalewaja, JD, Peterson, DE, Young, BG (2010) Effect of hard water and ammonium sulfate on weak acid herbicide activity. J ASTM Int 7: 110. DOI: 10.1520/JAI102869Google Scholar