Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T19:14:24.925Z Has data issue: false hasContentIssue false

Effect of a Living Mulch on Weed Seed Banks in Tomato

Published online by Cambridge University Press:  20 January 2017

Kevin D. Gibson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
John Mcmillan
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Stephen G. Hallett
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Thomas Jordan
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Stephen C. Weller
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected].

Abstract

Weeds that emerge between rows in fresh market tomatoes after the critical period of competition are not suppressed by the crop and can produce large quantities of seed. A living mulch planted between rows might limit weed seed production. Buckwheat was seeded between tomato rows after the critical period in 2007 and 2008 in field studies near Lafayette, IN. Weeds were allowed to emerge after the critical period (CP), controlled throughout the growing season (no seed threshold [NST]), or mowed to limit seed production (MOW). Buckwheat and MOW plots were mowed twice after the critical period in 2007 and once in 2008. Seed banks were sampled after the critical period and in the following spring. Tomato yields were not reduced by growing buckwheat between rows. Seed bank densities for common purslane and carpetweed, which escaped mowing due to their prostrate habits, increased in all treatments. Germinable seed bank densities were 306 seeds m−2 or less in the NST and buckwheat treatments but 755 seeds m−2 or more in the CP treatments for species with erect habits in both years. Seed bank densities were lower in the MOW treatment than in the CP treatments in 2007 but not in 2008. In a parallel experiment conducted in adjacent plots, buckwheat was seeded at five rates (0, 56, 112, 168, and 224 kg seed ha−1). Plots were mowed and emergent weeds sampled as described for the intercrop experiment. Weed densities before mowing decreased linearly with buckwheat seed rate. After mowing, no relationship was detected between seed rate and weed densities. This study supports the hypothesis that a living mulch planted after the critical period can be used to limit seed bank growth without reducing tomato yields, but additional research is needed to better understand the effect of mowing on living mulch growth and weed suppression.

En el cultivo del tomate para el mercado en fresco, las malezas que emergen entre los surcos después del período crítico de competencia, no son suprimidas por el cultivo y pueden producir grandes cantidades de semilla. Una cobertura viva sembrada entre surcos podría limitar la producción de estas semillas. En estudios de campo cercanos a Lafayette, IN, en 2007 y 2008, se sembró Fagopyrum esculentum (BW) entre surcos de tomate después del período crítico. Se permitió que las malezas emergieran después del período crítico (CP), se controlaron durante la temporada de crecimiento (NST) o fueron podadas para limitar la producción de semillas (MOW). Las parcelas BW y MOW fueron podadas dos veces después del período crítico en 2007 y una vez en 2008. Se tomaron muestras de los bancos de semillas después del período crítico y en la primavera siguiente. Los rendimientos del tomate no se redujeron por el crecimiento de Fagopyrum esculentum entre surcos. En todos los tratamientos se incrementaron las densidades de los bancos de semillas de Portulaca oleracea y Mollugo verticillata, que debido a sus hábitos rastreros, no fueron afectadas por la poda. Las densidades del banco de semillas germinable, fueron 306 semillas m2 o menos en los tratamientos NST y BW, pero fueron de 755 semillas m2 o más en los tratamientos CP para especies de hábitos erectos en ambos años. Las densidades del banco de semillas fueron menores en el tratamiento MOW que en los CP en 2007 pero no en 2008. En un experimento paralelo realizado en parcelas adyacentes, Fagopyrum esculentum se sembró a cinco dosis (0, 56, 112, 168, y 224 kg de semillas x ha-1). Las parcelas se podaron y se tomaron muestras de las malezas emergentes, como se describió en el experimento del cultivo asociado. Las densidades de las malezas antes de la poda disminuyeron linealmente con la dosis de siembra de Fagopyrum esculentum. Después de la poda, no se detectó ninguna relación entre la dosis de siembra y las densidades de la maleza. Este estudio apoya la hipótesis de que la cobertura viva sembrada después del período crítico puede usarse para limitar el crecimiento del banco de semillas, sin disminuir el rendimiento del tomate, pero se requiere investigación adicional para entender mejor el efecto de la poda sobre el crecimiento de la cobertura viva y la supresión de malezas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bhowmik, P. C. and Reddy, K. N. 1988. Interference of common lambsquarters (Chenopodium album) in transplanted tomato (Lycopersicon esculentum). Weed Technol 2:550552.Google Scholar
Biazzo, J. and Masiunas, J. B. 2000. The use of living mulches for weed management in hot pepper and okra. J. Sustain. Agric 16:5979.Google Scholar
Bicksler, A. J. and Masiunas, J. B. 2009. Canada thistle (Cirsium arvense) suppression with buckwheat or sudangrass cover crops and mowing. Weed Technol 23:556563.Google Scholar
Bilalis, D., Papastylianou, P., Konstantas, A., Patsiali, S., Karkanis, A., and Efthimiadou, A. 2010. Weed-suppressive effects of maize–legume intercropping in organic farming. Int. J. Pest Manag 56:173181.Google Scholar
Bond, W., Moore, H. C., Atkinson, R. J., Bevan, J. R., and Lennartson, M. E. K. 1998. Changes in the weed seedbank following different weeding treatments in drilled salad onion and carrot crops in organic and conventional systems. Biol. Agric. Hort 16:203215.Google Scholar
Brainard, D. C. and Bellinder, R. R. 2004. Weed suppression in a broccoli–winter rye intercropping system. Weed Sci 52:281290.Google Scholar
Bugg, R. L. and Waddington, C. 1994. Using cover crops to manage arthropod pests of orchards: a review. Agric. Ecol. Environ 50:1128.Google Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997. Implications of weed seedbank dynamics to weed management. Weed Sci 45:329336.Google Scholar
Buhler, D. D. 2002. Challenges and opportunities for integrated weed management. Weed Sci 50:273280.Google Scholar
Campbell, C. G. 1997. Buckwheat: Fagopyrum esculentum Moench. Promoting the Conservation and Use of Underutilized and Neglected Crops, 19. Rome, Italy: International Plant Genetic Resources Institute. 93 p.Google Scholar
Cardina, J. and Norquay, H. M. 1997. Seed production and seedbank dynamics in subthreshold velvetleaf (Abutilon theophrasti) populations. Weed Sci 45:8590.Google Scholar
Chase, C. A. and Mbuya, O. S. 2008. Greater interference from living mulches than weeds in organic broccoli production. Weed Technol 22:280285.Google Scholar
Cordes, R. C. and Bauman, T. T. 1984. Field competition between ivyleaf morningglory (Ipomoea hederacea) and soybeans (Glycine max). Weed Sci 32:364370.Google Scholar
Cousens, B. J. 1987. Theory and realty of weed control thresholds. Plant Prot. Q 2:1320.Google Scholar
Donald, W. W. 2007a. Between-row mowing systems control summer annual weeds in no-till grain sorghum. Weed Technol 21:511517.Google Scholar
Donald, W. W. 2007b. Control of both winter annual and summer annual weeds in no-till corn with between-row mowing systems. Weed Technol 21:591601.Google Scholar
Donald, W. W., Kitchen, N. R., and Sudduth, K. A. 2001. Between-row mowing + banded herbicide to control annual weeds and reduce herbicide use in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol 15:576584.Google Scholar
Egel, D., Lam, F., Foster, R., Maynards, E., Weinzierl, R., Babadoost, M., Taber, H., Hutchinson, B., and Jett, L. W. 2011. Midwest Vegetable Production Guide for Commercial Growers. West Lafayette, IN: Agricultural Communication Media Distribution Center, Purdue University. http://www.btny.purdue.edu/Pubs/ID/id-56/. Accessed January 4, 2011.Google Scholar
Gallandt, E. 2006. How can we target the weed seed bank? Weed Sci 54:588596.Google Scholar
Graglia, E., Melander, B., and Jensen, R. K. 2006. Mechanical and cultural strategies to control Cirsium arvense in organic arable cropping systems. Weed Res 46:304312.Google Scholar
Hartwig, N. and Ammon, H. U. 2002. Cover crops and living mulches. Weed Sci 50:688699.Google Scholar
Hatcher, P. E. and Melander, B. 2003. Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res 43:303322.Google Scholar
Hillger, D. E., Weller, S. C., Maynard, E., and Gibson, K. D. 2006. Weed management systems in Indiana tomato production. Weed Sci 54:516520.Google Scholar
Iqbal, Z., Hiradate, S., Noda, A., Isojima, S., and Fuji, Y. 2003. Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Sci 51:657662.Google Scholar
Khanh, T. D., Chung, M. I., Xuan, T. D., and Tawata, S. 2009. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci 191:172184.Google Scholar
Kalinova, J., Vrchotova, N., and Triska, J. 2007. Exploitation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J. Agric. Food Chem 55:64536459.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci 50:773786.Google Scholar
Liebman, M. and Dyck, E. 1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl 3:92102.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models, 2nd ed. Cary, NC: SAS Insitute, Inc. 814 p.Google Scholar
Marshall, H. G. and Pomeranz, Y. 1982. Buckwheat: description, breeding, production, and utilization. Pages 157210. In Pomeranz, Y. ed. Advances in in Cereal Science and Technology. St. Paul, MN: Am. Assoc. Cereal Chem.Google Scholar
Mayen, C. D., Weller, S. C., and Gibson, K. D. 2009. Rapid changes in weed seed bank size and composition in a tomato–soybean rotation. Weed Technol 22:729735.Google Scholar
Mirsky, S. B., Gallandt, E. R., Mortensen, D. A., Curran, W. S., and Shumway, D. L. 2010. Reducing the germinable weed seedbank with soil disturbance and cover crops. Weed Res 50:341352.Google Scholar
Norris, R. F. 1999. Ecological implications of using thresholds for weed management. J. Crop Prod 2:3158.Google Scholar
Perez, F. G. M. and Masiunas, J. B. 1990. Eastern black nightshade (Solanum ptycanthum) interference in processing tomato (Lycopersicon esculentum). Weed Sci 38:385388.Google Scholar
[SAN] Sustainable Agriculture Network 1998. Managing Cover Crop Profitability. 2nd ed. Handbook Series Book 3. Burlington, VT: Sustainable Agriculture Productions. Pp. 7779.Google Scholar
Sanyal, D., Bhowmik, P. C., Anderson, R. L., and Shrestha, A. 2008. Revisiting the perspective and progress of integrated weed management. Weed Sci 56:161167.Google Scholar
Smith, R. G. and Gross, K. L. 2006. Rapid change in the germinable fraction of the weed seed bank in crop rotations. Weed Sci 54:10941100.Google Scholar
Tipping, P. W. 2008. Mowing-induced changes in soil seed banks and populations of plumeless thistle (Carduus acanthoides) and musk thistle (Carduus nutans). Weed Technol 22:4955.Google Scholar
Wehtje, G., Wells, L. W., Choate, J. H., Martin, N. R. Jr., and Curtis, J. M. 1999. Mowing as a weed control supplement to herbicides and cultivation in peanut (Arachis hypogaea L.). Weed Technol 13:139143.Google Scholar
Zehnder, G., Gur, G. M., Kühne, S., Wade, M. R., Wratten, S. D., and Wyss, E. 2007. Arthropod pest management in organic crops. Ann. Rev. Entomol 52:5780.Google Scholar
Zimdahl, R. L. 1988. The concept and application of the critical weed-free period. Pages 145155. In Altieri, M. A. and Liebman, M. eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC.Google Scholar