Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T21:27:16.851Z Has data issue: false hasContentIssue false

Downy Brome (Bromus tectorum) Competition and Control in No-Till Spring Wheat

Published online by Cambridge University Press:  20 January 2017

Michael H. Ostlie*
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
Kirk A. Howatt
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
*
Corresponding author's E-mail: [email protected]

Abstract

Downy brome is one of the leading plant pests in winter wheat and no-till spring wheat in many areas of the country. It has recently been studied in North Dakota where it is emerging as a serious crop competitor. Downy brome plants produced up to 60 tillers and more than 7,500 seeds when no control measures were used and densities were less than 2 plants m−2. Experiments focusing on herbicide-application timing identified differences in downy brome control and the grain yield of spring wheat. Regardless of fall or spring application timing, glyphosate applied PRE to wheat completely controlled downy brome in 2007. In 2008, control was not achieved with the earliest glyphosate-application timings because of late-emerging plants. When comparing fall and spring application timings of other herbicides, imazapic provided at least 79% control at each timing and location, resulting in the highest imazamox-resistant spring wheat yield. In general, herbicides performed better when applied in fall than they did when applied in spring. When herbicides were applied POST, imazamox provided the greatest downy brome control and usually caused the largest numerical reduction in downy brome biomass, seed, and stem number. If downy brome was left untreated, regression analysis predicted approximately 2,000 stems m−2 could result in total yield loss of spring wheat.

Bromus tectorum es una de las principales plagas vegetales en trigo de invierno y trigo de primavera bajo labranza cero en muchas áreas del país. Recientemente, se ha estado estudiando esta maleza en North Dakota donde se está convirtiendo en un serio competidor con el cultivo. Las plantas de B. tectorum produjeron hasta 60 hijuelos y más de 7,500 semillas cuando no se usaron medidas de control y las densidades fueron menores a 2 plantas m−2. Experimentos enfocándose en el momento de aplicación del herbicida identificaron diferencias en el control de B. tectorum y en el rendimiento del trigo de primavera Sin importar si la aplicación se hizo en el otoño o en la primavera, glyphosate aplicado PRE al trigo controló completamente B. tectorum en 2007. En 2008, no se alcanzó el control deseado con las aplicaciones más tempranas debido a una emergencia tardía de las malezas. Cuando se comparó las aplicaciones en el otoño y en la primavera de otros herbicidas, imazapic brindó al menos 79% de control en cada momento y localidad, resultando en el mayor rendimiento del trigo de primavera resistente a imazamox. En general, los herbicidas tuvieron un mejor rendimiento cuando fueron aplicados en el otoño que en la primavera. cuando los herbicidas fueron aplicados POST, imazamox brindó el mayor control de B. tectorum y usualmente causó la mayor reducción numérica en la biomasa, semilla y número de tallos de esta maleza. Si se hubiera dejado B. tectorum sin tratar, un análisis de regresión predijo que aproximadamente 2,000 tallos m−2 podrían resultar en una pérdida total del rendimiento del trigo de primavera.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Assistant Professor, Carrington Research Extension Center, North Dakota State University, Carrington, ND 58421.

References

Literature Cited

Anonymous. 2009a. Maverick herbicide product label. Monsanto Publication 71007D2-18. St. Louis, MO Monsanto Company. 5 p.Google Scholar
Anonymous. 2009b. Everest herbicide product label. Arysta Publication AD022708-A. Cary, NC Arysta LifeScience. 20 p.Google Scholar
Anonymous. 2010. Olympus herbicide product label. Bayer Publication US057683396. Research Triangle Park, NC Bayer CropScience. 33 p.Google Scholar
Blackshaw, R. E. 1993a. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci. 41:551556.Google Scholar
Blackshaw, R. E. 1993b. Downy brome (Bromus tectorum) interference in winter rye (Secale cereale). Weed Sci. 41:557562.Google Scholar
Blackshaw, R. E. and Hammon, W. M. 1998. Control of downy brome (Bromus tectorum) in winter wheat (Triticum aestivum) with MON 37500. Weed Technol. 12:421425.Google Scholar
Cousens, R. D. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Givens, W. A., Shaw, D. R., Kruger, G. R., Johnson, W. G., Weller, S. C., Young, B. G., Wilson, R. G., Owen, M.D.K., and Jordan, D. 2009. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 23:150155 Google Scholar
Geier, P. W., Stahlman, P. W., Northam, F. E., Miller, S. D., and Hageman, N. R. 1998. MON 37500 rate and timing affects downy brome (Bromus tectorum) control in winter wheat (Triticum aestivum). Weed Sci. 46:366373.Google Scholar
Keeley, P. E. and Thullen, R. J. 1991. Biology and control of black nightshade (Solanum nigrim) in cotton (Gossypium hirsutum). Weed Technol. 5:713722.Google Scholar
Mack, R. N. and Pyke, D. A. 1983. The demography of Bromus tectorum: variation in time and space. J. Ecol. 71:6993.Google Scholar
Massee, T. W. 1976. Downy brome control in dryland winter wheat with stubble-mulch fallow and seeding management. Agron. J. 68:952955.Google Scholar
Mitich, L. W. 1999. Downy brome, Bromus tectorum L. Weed Technol. 13:665668.Google Scholar
Morris, C., Monaco, T. A., and Rigby, C. W. 2009. Variable impacts of imazapic on downy brome (Bromus tectorum) and seeded species in two rangeland communities. Invasive Plant Sci. Manag. 2:110119.Google Scholar
Morrow, L. A. and Stahlman, P. W. 1984. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32:26.Google Scholar
Owen, S. M., Sieg, C. H., and Gehring, C. A. 2011. Rehabilitating downy brome (Bromus tectorum)-invaded shrublands using imazapic and seeding with native shrubs. Invasive Plant Sci. Manag. 4:223233.Google Scholar
Rydrych, D. J. and Muzik, T. J. 1968. Downy brome competition and control in dryland wheat. Agron J. 60:279280.Google Scholar
Rydrych, D. J. 1974. Competition between winter wheat and downy brome. Weed Sci. 22:211214.Google Scholar
Sellers, B. A. and Hickman, M. V. 2001. Effects of soil amendments on herbicide efficacy and leaching. Weed Technol. 15:686696.Google Scholar
Sheley, R. L. and Petroff, J. K., eds. 1999. Biology and Management of Noxious Rangeland Weeds. Corvallis Oregon State University Press. 428 p.Google Scholar
Stahlman, P. W. and Miller, S. D. 1990. Downy Brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci. 38:221228.Google Scholar
Swan, D. G. and Whitesides, R. E. 1988. Downy brome (Bromus tectorum) control in winter wheat. Weed Technol. 2:481485.Google Scholar
Thill, D. C., Beck, K. G., and Callihan, R. H. 1984. The biology of downy brome (Bromus tectorum). Weed Sci. 32:712.Google Scholar
Zollinger, R., Christoffers, M., Endres, G., Gramig, G., Howatt, K., Jenks, B., Lym, R., Stachler, J., Thostenson, A., and Valenti, H. H. 2011. 2010 North Dakota Weed Control Guide. Fargo, ND North Dakota State University Extension Service publication W-253. 13 p.Google Scholar