Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T03:19:01.009Z Has data issue: false hasContentIssue false

Distribution of Arable Weed Populations along Eastern Arkansas Mississippi Delta Roadsides: Occurrence, Distribution, and Favored Growth Habitats

Published online by Cambridge University Press:  20 January 2017

Nicholas E. Korres*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 W. Altheimer Drive, Fayetteville, AR 72704
Muthukumar V. Bagavathiannan
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, TX 77843
Andy Mauromoustakos
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701
*
Corresponding author's E-mail: [email protected] or [email protected].

Abstract

A survey was conducted in 2012 across 13 counties in the eastern Arkansas–Mississippi Delta area on 489 randomly selected road sites to assess the distribution of the most commonly occurring arable weeds. Among the 36 species recorded, Palmer amaranth, johnsongrass, large crabgrass, barnyardgrass, prickly sida, and broadleaf signalgrass were the top six weed species, occurring at 313, 294, 261, 238, 176, and 136 sites, respectively. Barnyardgrass, johnsongrass, and Palmer amaranth were present at 34, 32, and 31% of all sampling occasions (site by roadside topographical characteristic). Habitat preferences varied between weed species. Palmer amaranth, large crabgrass, and johnsongrass exhibited a preference for disturbed habitats as well as field shoulders. Conversely, barnyardgrass, yellow nutsedge, hemp sesbania, and giant ragweed exhibit a preference for moist environments similar to these found in roadside ditches. Herbicide use on roadsides is subject to many environmental regulations and public concerns that, in combination with the evolution of herbicide resistance, necessitate an effective plan for managing agronomically important weed species on eastern Arkansas–Mississippi Delta roadsides.

En 2012, se realizó un estudio observacional a lo largo de 13 condados en el este del área del Delta Arkansas-Mississippi en 489 sitios de carreteras, seleccionados aleatoriamente para evaluar la distribución de las malezas más comúnmente encontradas en áreas agrícolas arables. Entre las 36 especies detectadas, Amaranthus palmeri, Sorghum halepense, Digitaria sanguinalis, Sida spinosa, y Urochloa platyphylla fueron las seis especies de malezas más frecuentes encontrándose en 313, 294, 261, 238, 176, y 136 sitios, respectivamente. Echinochloa crus-galli, S. halepense, y A. Palmeri estuvieron presentes en 34, 32, y 31% de todas las condiciones de muestreo (sitio por característica topográfica de la carretera). Las preferencias de hábitat variaron entre las especies de malezas. A. palmeri, D. sanguinalis, y S. halepense exhibieron una preferencia por hábitats perturbados y los bordes de los campos. En cambio, E. crus-galli, Cyperus esculentus, Sesbania herbacea, y Ambrosia trifida exhibieron una preferencia por ambientes húmedos similares a los encontrados en los drenajes de las carreteras. El uso de herbicidas en los bordes de carreteras se encuentra bajo muchas regulaciones ambientales y preocupaciones del público que, en combinación con la evolución de resistencia a herbicidas, necesita un plan efectivo para el manejo de especies agronómicamente importantes en los bordes de carreteras en el este del área del Delta Arkansas-Mississippi.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Angelstam, P, Kopylova, E, Korn, H, Lazdinis, M, Sayer, JA, Teplyakov, V, Tornblom, J (2005) Changing forest values in Europe. Pages 5974 in Sayer, JA, Maginnis, S, eds. Forests in Landscapes: Ecosystem Approaches to Sustainability. London, UK: Earthscan Google Scholar
Anonymous (2000) National Highways Verges. National Treasures. Delft, Netherlands: Ministerie vanVerkaar en Waterstaat. 47 pGoogle Scholar
Bagavathiannan, MV, Norsworthy, JK, Scott, RC, Barber, TL (2013) The spread of herbicide-resistant weeds: what should growers know? Agriculture and Natural Resources, FSA 2171. Fayetteville, AR: University of Arkansas Cooperative Extension Service. 7 pGoogle Scholar
Bassett, JI, Crompton, CW (1982) The biology of Canadian weeds. Ambrosia trifida . Can J Plant Sci 62:10031010 Google Scholar
Best, KF, Bowes, GG, Thomas, AG, Maw, MG (1980) The biology of Canadian weeds. Euphorbia esula . Can J Plant Sci 60:651663 Google Scholar
Birdsall, JL, McCaughey, W, Runyon, JB (2012) Roads impact the distribution of noxious weeds more than restoration treatments in a lodgepole pine forest in Montana, USA. Restor Ecol 20:517523 Google Scholar
Brouwer, C, Goffean, A, Heibloem, M (1985) Irrigation Water Management: Training Manual No. 1. Introduction to irrigation. Food and Agriculture Organization (FAO) of the United Nations. Natural Resources Management and Environment Department Rome, Italy. 5360 pGoogle Scholar
Bryson, CT, Hanks, JE (2006) Weed Populations in Conventional and Conservation Tillage Management Cotton and Soybean Systems. Mississippi Agricultural and Forestry Experiment Station. Research Report. Vol. 23, No. 18. MS Mississippi State University. 16 pGoogle Scholar
Bugg, RL, Brown, CS, Anderson, JH (1997) Restoring native perennial grasses to rural roadsides in the Sacramento Valley of California: establishment and evaluation. Restor Ecol 5:214228 Google Scholar
Burke, IC, Holland, JB, Burton, JD, York, AC, Wilcut, JW (2007) Johnsongrass (Sorghum halepense) pollen expresses ACCase target-site resistance. Weed Technol 21:384388 Google Scholar
Burke, IC, Thomas, WE, Spears, JF, Wilcut, JW (2002) Influence of environmental factors on broadleaf signalgrass (Brachiaria platyphylla) germination. Weed Sci 51:683689 Google Scholar
Christen, D, Matlack, G (2006) The role of roadsides in plant invasions: a demographic approach. Conserv Biol 20: 385391 Google Scholar
Christen, DC, Matlack, GR (2009) The habitat and conduit functions of roads in the spread of three invasive plant species. Biol Invasions 11:453465 CrossRefGoogle Scholar
Dadney, SM, Rebich, RA, Pote, JW (2001) The Mississippi Delta MSEA Program. Pages 10941110 in Stott, DE, Mohtar, RH, Steinhardtb, GC, eds. Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting, May 24–29, 1999, Purdue University and the USDA–ARS National Soil Erosion Research Laboratory West Lafayette, IN: Pubs: International Soil Conservation Organization. in cooperation with United States Department of Agriculture Agricultural Research Service National Soil Erosion Research Laboratory and Purdue UniversityGoogle Scholar
Ehleringer, J (1983) Ecophysiology of Amaranthus palmeri, a Sonoran desert summer annual. Oecologia 57:107112 Google Scholar
Green, JM, Owen, MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 59:58195829 Google Scholar
Hall, LS, Krausman, PR, Morrison, ML (1997) The habitat concept and a plea for standard terminology. Wildl Soc Bull 25(1):173182 Google Scholar
Heap, I (2014) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed September 14, 2014Google Scholar
Israel, TD, Rhodes, GN Jr., Via, JD, Muller, B (2012). Knotroot Foxtail. Pasture Weed Factsheet. Knoxville, TN: University Tennessee Extension. 12 pGoogle Scholar
Juneau, KJ, Tarasoff, CS (2013) The seasonality of survival and subsequent growth of common reed (Phragmites australis) rhizome fragments. Invasive Plant Sci Manag 6:7986 Google Scholar
Korres, NE, Norsworthy, JK, Bagavathiannan, MV, Mauromoustakos, A (2015) Distribution of arable weed populations along eastern Arkansas–Mississippi Delta roadsides: factors affecting weed occurrence. Weed Technol 29:596604 Google Scholar
Krausman, PR (1999) Some basic principles of habitat use. Pages 8590 in Launchbaugh, KL, Mosley, JC, Sanders, KO, eds. Grazing Behavior of Livestock and Wildlife. Pacific Northwest Range Short Course, March 23–24, 1999, University of Idaho Moscow, Station Bulletin 70, Moscow, Idaho, University of IdahoGoogle Scholar
Maddox, V, Bryd, JB, Westbrooks, R (undated). Large Crabgrass [Digitaria sanquinalis (L.) Scop.]. Row crop. Extension Service: Mississippi State University. 12 pGoogle Scholar
[MDEP] Maine Department of Environmental Protection (2010) Gravel Road Maintenance Manual. A Guide for Landowners on Camp and Other Gravel Roads. Kennebec County Soil and Water Conservation District and Maine Department of Environmental Protection and Water Quality. www.maine.gov/dep/land/watershed/camp/road/gravel_road_manual.pdf. Accessed December 15, 2014Google Scholar
McNabb, C, Batterson, T (1991) Occurrence of the common reed, Phragmites australis, along roadsides in lower Michigan. Mich Academician 23:211220 Google Scholar
McNaught, I, Thackway, R, Brown, L, Persons, M (2008) A Field Manual for Surveying and Mapping Nationally Significant Weeds. 2nd edn. Canberra, Australia: Bureau of Rural Sciences. 129 pGoogle Scholar
Myles, A, Reinschmiedt, L, (1992) Delta economy. The agricultural base. Pages 256279 in Gosby, AG, Brackin, MW, Mason, TD, McCulloch, ER, eds, Social and Economic Portrait of the Mississippi Delta. Mississippi State University, Mississippi: Social Science Research Center. Mississippi Agricultural and Forestry Experimental Station. Mississippi State University Google Scholar
Newman, SD (2003) Fall panicgrass. Panicum dichotomiflorum . USDA, NRCS. The PLANTS Database. Baton Rouge, Louisiana: National Plant Data Center. http://plants.usda.gov/plantguide/pdf/pg_padi.pdf. Accessed March 8, 2015Google Scholar
Osunsami, S (2009). Killer Pigweeds Threaten Crops in the South. http://abcnews.go.com/WN/pig-weed-threatens-agriculture-industry-overtaking-fields-crops/story?id=8766404. Accessed August 5, 2014Google Scholar
Overton, JM, Smale, MC, Whaley, KJ, Fitzgerald, NB, McGlone, H (2002) A Methodology for Assessing the Biodiversity of Road Networks: A Case Study in New Zealand. Transfund New Zealand Research Report 421. Wellington, New Zealand: Transfund. 80 pGoogle Scholar
Price, AJ, Wilcut, JW (2007) Response of ivyleaf morningglory (Ipomoea hederacea) to neighboring plants and objects. Weed Technol 21:922927 Google Scholar
Qiang, S (2005) Multivariate analysis, description and ecological interpretation of weed vegetation in the summer crop fields of Anhui province, China. J Integr Plant Biol 47:11931210 Google Scholar
Rankins, A Jr., Byrd, JD Jr., Mask, DB, Barnett, JW, Gerard, PD (2005) Survey of soybean weeds in Mississippi. Weed Technol 19:492498 Google Scholar
Reddy, KN, Norsworthy, JK (2010) Glyphosate resistant crop production systems: impact on weed species shifts. Pages 165184 in Nandula, VK, ed. (2010). Glyphosate Resistance in Crops and Weeds: History, Development and Management, Singapore: J. Wiley Google Scholar
Riar, DS, Norsworthy, JK, Johnson, DB, Scott, RC, Bagavathiannan, M (2011) Glyphosate resistance in johnsongrass (Sorghum halepense) biotype from Arkansas. Weed Sci 59:299304 Google Scholar
Riar, DS, Norworthy, JK, Steckel, LE, Stephenson, DO, Eubank, TW, Scott, RC (2013a) Assessment of weed management practices and problem weeds in the midsouth United States—soybean: a consultant's perspective. Weed Technol 27:612622 CrossRefGoogle Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO, Bond, JA (2013b) Consultant perspectives on weed management needs in midsouthern United States cotton: a following-up survey. Weed Technol 27:778787 Google Scholar
SAS (2013) SAS Institute Inc. JMP® 11 Specialized Model. Cary, NC: SAS Institute Inc Google Scholar
Saunders, J (1992) Demography of Delta. Pages 4564 in Gosby, AG, Brackin, MW, Mason, TD, McCulloch, ER eds. Social and Economic Portrait of the Mississippi Delta. Mississippi State University, Mississippi Social Science Research Center. Mississippi Agricultural and Forestry Experimental Station. Mississippi State University Google Scholar
Shaner, DL (2000) The impact of glyphosate-resistant crops on the use of other herbicides and resistance management. Pest Manag Sci 56:320326 Google Scholar
Turner, FA, Jordan, KS, Van Acker, RC (2012) Review: The recruitment biology and ecology of large and small crabgrass in turfgrass: implications for management in the context of a cosmetic pesticide ban. Can J Plant Sci 92:829845 Google Scholar
[USDA] U.S. Department of Agriculture (2014) 2012 Census of Agriculture. Summary and State Data. Vol. 1. Geographic Area Series. Part 51. AC-12-A-51. United States Department of Agriculture, National Agricultural Statistics Service. 586 pGoogle Scholar
[USDA, NRCS] U.S. Department of Agriculture, Natural Resources Conservation Service (2003) The PLANTS Database. National Plant Data Center, Baton Rouge, Louisiana. http://plants.usda.gov. Accessed March 9, 2015Google Scholar
[US EPA] U.S. Environmental Protection Agency (1999) Considering Ecological Processes in Environmental Impact Assessments. July 1999. Washington, DC: Office of Federal Activities. 90 pGoogle Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:1227 Google Scholar