Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T16:10:46.314Z Has data issue: false hasContentIssue false

Differential Response of Liverwort (Marchantia polymorpha) Tissue to POST-Applied Quinoclamine

Published online by Cambridge University Press:  20 January 2017

James E. Altland*
Affiliation:
USDA-ARS, Wooster, OH 44691
Glenn Wehtje
Affiliation:
Auburn University, Auburn, AL 36830
Jeff Sibley
Affiliation:
Auburn University, Auburn, AL 36830
Michael E. Miller
Affiliation:
USDA-ARS, Wooster, OH 44691
Charles H. Gilliam
Affiliation:
USDA-ARS, Wooster, OH 44691
Charles Krause
Affiliation:
USDA-ARS, Wooster, OH 44691
*
Corresponding author's E-mail: [email protected]

Abstract

Quinoclamine is used in Europe, and was under evaluation in the Unites States for the control of liverwort in nursery crops. Liverwort is a nonvascular, chlorophyll-containing plant that can be problematic in greenhouse and nursery crops. POST-applied quinoclamine controls liverwort. However, liverwort structures vary in their sensitivity to POST-applied quinoclamine. Specifically, archegonial receptacles (female) are much more tolerant of quinoclamine than either antheridial receptacles (male) or thalli (leaflike structures). A series of studies were conducted to, first, document the degree of differential sensitivity between tissues to quinoclamine, and second, to determine the basis of this differential sensitivity. The dose that results in 50% of the population being controlled (I50) of antheridial receptacles and juvenile thalli were estimated to be 1.60 and 1.27 kg·ha−1, respectively. The I50 of archegonial receptacles could not be estimated, but exceeded 10.45 kg·ha−1. Chlorophyll content varied between liverwort tissues, but the content did not correlate to quinoclamine sensitivity. Absorption of 14C after application of radiolabeled quinoclamine was less in archegonial receptacles than in either antheridial receptacles or thalli. Scanning electron microscopy of the surface of the liverwort tissues revealed that archegonial receptacles had smaller pores (equivalent to stomata in higher plants) than either antheridial receptacles or thalli. The tolerance of archegonial receptacles to quinoclamine can be partially, but not exclusively, attributed to reduced absorption. This reduced absorption may be attributed to the limited pore size and less total pore area of the archegonial receptacles.

La quinoclamina es usada en Europa y se estuvo evaluando en los Estados Unidos para el control de Marchantia polymorpha en cultivos en viveros. M. polymorpha es una planta no vascular, que contiene clorofila y que puede ser problemática en invernaderos y viveros. Las aplicaciones POST de quinoclamina controlan M. polymorpha. Sin embargo, las estructuras de esta planta varían en su sensibilidad a quinoclamina aplicada POST. Específicamente, los arquegonios (órgano reproductor femenino) son mucho más tolerantes a la quinoclamina que los anteridios (órgano reproductor masculino) o los talos (estructura compuesta con semejanza de hoja). Se realizaron una serie de estudios para poder primero, documentar el grado de sensibilidad diferencial entre tejidos al quinoclamina y segundo, para determinar las bases de esta sensibilidad diferencial. El I50 de los anteridios y talos jóvenes se estimaron en 1.60 y 1.27 kg ha−1 respectivamente. El I50 de los arquegonios no pudo ser estimado, pero excedió 10.45 kg ha−1. El contenido de clorofila varió entre los tejidos de M. polymorpha, pero el contenido no tuvo correlación con la sensibilidad a la quinoclamina. La absorción de 14C después de la aplicación de quinoclamina radioetiquetada fue menor en los arquegonios que en los anteridios o talos. El escaneo de la superficie de los tejidos de M. polymorpha con microscopio electrónico reveló que los arquegonios tuvieron poros (equivalentes a estomas en plantas superiores) más pequeños que los anteridios o talos. La tolerancia de los arquegonios a la quinoclamina, puede atribuirse parcial más no exclusivamente a una absorción reducida. Esta reducción en la absorción puede atribuirse al tamaño limitado de los poros y a una menor área total de poros en los arquegonios.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altland, J. E., Wehtje, G., Gilliam, C., and Miller, M. E. 2007. Liverwort control with quinoclamine. Weed Technol. 21:483488.Google Scholar
Altland, J. E., Wehtje, G., Gilliam, C., and McKee, M. 2008. Liverwort (Marchantia polymorpha) response to quinoclamine in a pine bark substrate. Weed Sci. 56:762766.Google Scholar
Hill, J. B., Overholts, L. O., Popp, H. W., and Grove, A. R. 1960. Botany: A Textbook for Colleges. New York McGraw Hill. 54 p.Google Scholar
Inskeep, W. P. and Bloom, P. R. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483485.Google Scholar
Keterchersid, M. L., Boswell, T. E., and Merkle, M. G. 1978. Effects of 2,4-DB on yield and pod development of peanuts. Peanut Sci. 5:3539.Google Scholar
Klingman, D. L. 1953. Effects of varying rates of 2,4-D and 2,4,5-T at different stages of growth on winter wheat. Agron. J. 45:606610.Google Scholar
Naleweja, J. D. 1969. Reaction of flax to dicamba applied at several stages. Weed Sci. 17:385387.Google Scholar
Newby, A., Altland, J. E., Gilliam, C. H., and Wehtje, G. 2006. Postemergence liverwort control in container-grown nursery crops. J. Environ. Hort. 24:230236.Google Scholar
Newby, A., Altland, J. E., Gilliam, C. H., and Wehtje, G. 2007. Preemergence liverwort control in nursery containers. HortTechnology 17:496500.Google Scholar
Pline, W. A., Price, A. J., Wilcut, J. W., Edmisten, K. L., and Wells, R. 2001. Absorption and translocation of glyphosate in glyphosate-resistant cotton as influenced by application method and growth stage. Weed Sci. 49:460467.Google Scholar
Schönherr, J. and Ziegler, H. 1975. Hydrophobic cuticular ledges prevent water entering the air pores of liverwort thalli. Planta 124:5160.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Senesac, A. F. 2005. Evaluation of Mogeton for liverwort control in container nurseries. Proc. Weed Sci. Soc. Amer. 45:32. [Abstract]Google Scholar
Sibley, J. L., Eakes, J., Gilliam, C. H., Keever, G. J., Dozier, W. A., and Himelrick, D. G. 1996. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selections. HortScience 31:468470.Google Scholar
Svenson, S. E. 1997. Controlling common liverworts and moss in nursery production. Comb. Proc. Int. Plant Prop. Soc. 47:414422.Google Scholar
Svenson, S. E. 1998. Suppression of liverwort growth in containers using irrigation, mulches, fertilizers, and herbicides. Proc. South. Nur. Assoc. 43:396398.Google Scholar
Vea, E. and Palmer, C. 2006. Quinoclamine crop safety. http://ir4.rutgers.edu/ornamental/SummaryReports/QuinoclamineDataSummary2006.pdf. Accessed: December 23, 2010.Google Scholar
Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybean to 2,4-D, dicamba and picloram. Weed Sci. 17:388393.Google Scholar