Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:25:55.828Z Has data issue: false hasContentIssue false

Development of a Rapid Assay to Detect Reduced Fluridone Sensitivity in Invasive Watermilfoils

Published online by Cambridge University Press:  20 January 2017

Sarah T. Berger
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Michael D. Netherland*
Affiliation:
U.S. Army Engineer Research and Development Center Research Biologist, Gainesville, FL 32653
Gregory E. MacDonald
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected].

Abstract

Fluridone has been used to successfully manage Eurasian watermilfoil since the late 1980s. However, recent documentation of hybrid watermilfoils and the resulting potential for reduced herbicide sensitivity necessitate the need for an assay to determine individual population response to fluridone. A known fluridone-resistant hybrid watermilfoil population from Townline Lake in Michigan was compared to 11 Eurasian and hybrid watermilfoil populations in laboratory experiments to develop a method for determining response to fluridone. Apical shoot tips were exposed to increasing concentrations of fluridone (0 to 48 μg L−1) for 3, 5, and 7 d. Chlorophyll fluorescence (Fv/Fm) was evaluated using a pulse-amplitude modulated fluorometer at each interval along with pigment analysis of chlorophyll and β-carotene at the 7-d interval. Fv/Fm and pigment analysis yielded the same results. A fluridone concentration of 12 μg L−1 and an analysis interval of 7 d were found to be optimal in determining invasive watermilfoil response to fluridone. Use of such small-scale assays can provide resource managers a rapid tool to cost-effectively evaluate invasive watermilfoil response to fluridone.

Fluridone ha sido usado para manejar exitosamente Myriophyllum spicatum desde finales de los 1980s. Sin embargo, recientemente se ha documentado la existencia de Myriophyllum híbridos (M. spicatum × Myriophyllum sibiricum) con el potencial de que tengan una sensibilidad reducida a herbicidas, lo que hace necesario un ensayo que determine la respuesta de poblaciones individuales a fluridone. Una población híbrida de Myriophyllum con resistencia conocida a fluridone proveniente del Lago Townline en Michigan fue comparada con 11 poblaciones de M. spicatum y de Myriophyllum híbridos en experimentos de laboratorio para desarrollar un método para determinar la respuesta a fluridone. Las puntas del tallo apical fueron expuestas a concentraciones crecientes de fluridone (0 a 48 μg L−1) por 3, 5, y 7 s. Se evaluó la fluorescencia de chlorophyll (Fv/Fm) usando un fluorómetro de pulso de amplitud modulada, en cada intervalo de tiempo, además de hacer análisis de los pigmentos chlorophyll y β-carotene después de 7 días. Fv/Fm y el análisis de pigmentos produjeron los mismos resultados. Una concentración de 12 μg L−1 de fluridone y el analizar los resultados después de 7 d fue el óptimo para determinar la respuesta de Myriophyllum a fluridone. El uso de un ensayo de pequeña escala como este puede ser una herramienta para evaluar en forma rápida y a bajo costo la respuesta a fluridone de la especie invasiva Myriophyllum.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alwin, TG, Fox, MG, Cheruvelil, KS (2010) Estimating lake-wide watermilfoil weevil (Euhrychiopsis lecontei) density: the roles of quadrat size, sample size, and effort. J Aquat Plant Manag 48:96102 Google Scholar
Bartels, PG, Watson, CW (1979) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci 26:198203 CrossRefGoogle Scholar
Berger, ST, Netherland, MD, MacDonald, GE (2012) Evaluating fluridone sensitivity of multiple hybrid and Eurasian watermilfoil accessions under mesocosm conditions. J Aquat Plant Manag 50:135141 Google Scholar
Bowes, G, Holaday, AS, Haller, WT (1979) Seasonal variation in the biomass, tuber density, and photosynthetic metabolism of hydrilla in three Florida lakes. J Aquat Plant Manag 17:6165 Google Scholar
Crowell, WJ, Proulx, NA, Welling, CH (2006) Effects of repeated fluridone treatments over nine years to control Eurasian watermilfoil in a mesotrophic lake. J Aquat Plant Manag 44:133136 Google Scholar
Dayan, FE, Netherland, MD (2005) Hydrilla, the perfect aquatic weed, becomes more noxious than ever. Outlooks Pest Manag 16:277 CrossRefGoogle Scholar
Elmore, MT, Brosnan, JT, Kopsell, DA, Breeden, GK (2011) Methods of assessing bermudagrass (Cynodon dactylon) responses to HPPD-inhibiting herbicides. Crop Sci 51:28402845 CrossRefGoogle Scholar
Getsinger, KD, Madsen, JD, Koschnick, TJ, Netherland, MD, Stewart, RH, Honnell, DR, Staddon, AG, Owens, CS (2001) Whole-lake applications of SonarTM for selective control of Eurasian watermilfoil. Vicksburg, MS: U.S. Army Engineer Research and Development Center Technical Report ERDC/EL TR-01-7Google Scholar
Getsinger, KD, Madsen, JD, Koschnick, TJ, Netherland, MD (2002) Whole lake fluridone treatments for selective control of Eurasian watermilfoil: I. Application strategy and herbicide residues. Lake Resev Manag 18:181190 CrossRefGoogle Scholar
Haynes, D, Ralph, P, Prange, J, Dennison, B (2000) The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Mar Pollut Bull 41:288293 CrossRefGoogle Scholar
Kamermans, P, Hemminga, MA, deJong, DJ (1999) Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population. Mar Biol 133:527539 CrossRefGoogle Scholar
Kelting, DL, Laxson, CL (2010) Cost and effectiveness of hand harvesting to control the Eurasian watermilfoil population in Upper Saranac Lake, New York. J Aquat Plant Manag 48:15 Google Scholar
LaRue, EA, Zuellig, MP, Netherland, MD, Heilman, MA, Thum, RA (2013) Hybrid watermilfoil lineages are more invasive and less sensitive to a commonly used herbicide than their exotic parent (Eurasian watermilfoil). Evol Appl 6:462471 CrossRefGoogle ScholarPubMed
Madsen, JD, Sutherland, JW, Bloomfield, JA, Eichler, LW, Boylen, CW (1991) The decline of native vegetation under dense Eurasian watermilfoil canopies. J Aquat Plant Manag 29:9499 Google Scholar
Maxwell, K, Johnson, GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659668 CrossRefGoogle ScholarPubMed
Michel, A, Arias, RS, Scheffler, BE, Duke, SO, Netherland, MD, Dayan, FE (2004) Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol Ecol 13:32293237 CrossRefGoogle ScholarPubMed
Moody, ML, Les, DH (2002) Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc Natl Acad Sci U S A 99:1486714871 CrossRefGoogle ScholarPubMed
Moody ML Les DH (2007) Geographic distribution and genotypic composition of invasive hybrid watermilfoil ( Myriophyllum spicatum × M. sibiricum ) populations in North America. Biol Invasions 9:559570 CrossRefGoogle Scholar
Muller, P, Li, X, Niyogi, KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:15581566 CrossRefGoogle ScholarPubMed
Netherland, MD, Getsinger, KD (1995) Laboratory evaluation of threshold fluridone concentrations under static conditions for controlling hydrilla and Eurasian watermilfoil. J Aquat Plant Manag 33:3336 Google Scholar
Newman, RM, Ragsdale, DW, Milles, A, Oien, C (2001) Overwinter habit and the relationship of overwinter to in-lake densities of the milfoil weevil, Euhrychiopsis lecontei, a Eurasian watermilfoil biological control agent. J Aquat Plant Manag 39:6367 Google Scholar
Puri, A, MacDonald, GE, Haller, WT, Singh, M (2006) Phytoene and β-carotene response of fluridone-susceptible and -resistant hydrilla (Hydrilla verticillata) biotypes to fluridone. Weed Sci 54:995999 CrossRefGoogle Scholar
Roley, SS, Newman, RM (2008) Predicting Eurasian watermilfoil invasions in Minnesota. Lake Reserv Manag 24:361369 CrossRefGoogle Scholar
Selim, SA, O'Neal, SW, Ross, MA, Lembi, CA (1989) Bioassay of photosynthetic inhibitors in water and aqueous soil extracts with Eurasian watermilfoil (Myriophyllum spicatum). Weed Sci 37:810814 CrossRefGoogle Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America Google Scholar
Sturtevant, AP, Hatley, N, Pullman, GD, Sheick, R, Shorez, D, Bordine, A, Mausolf, R, Lewis, A, Sutter, R, Mortimer, A (2009) Molecular characterization of Eurasian watermilfoil, northern watermilfoil, and the invasive interspecific hybrid in Michigan lakes. J Aquat Plant Manag 47:128135 Google Scholar
Thum, RA, Heilman, M, Hausler, P, Huberty, L, Tyning, P, Wcisel, D, Zuellig, M, Berger, , Netherland, M (2012) Field and laboratory documentation of reduced fluridone sensitivity by a hybrid watermilfoil biotype. J Aquat Plant Manag 50:141146 Google Scholar
Wellburn, AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307313 CrossRefGoogle Scholar