Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T13:42:36.213Z Has data issue: false hasContentIssue false

Crop Response to Carryover of Mesotrione Residues in the Field

Published online by Cambridge University Press:  20 January 2017

Rachel N. Riddle*
Affiliation:
Department of Plant Agriculture, University of Guelph, 1283 Blueline Road, Simcoe, ON N3Y 4N5, Canada
John O'Sullivan
Affiliation:
Department of Plant Agriculture, University of Guelph, 1283 Blueline Road, Simcoe, ON N3Y 4N5, Canada
Clarence J. Swanton
Affiliation:
Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
Rene C. Van Acker
Affiliation:
Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

Two field residue studies were conducted from 2005 to 2007 in Simcoe, Ontario, Canada, to evaluate the effects of mesotrione soil residues on injury, plant dry weight, and yield of sugar beet, cucumber, pea, green bean, and soybean and to verify the potential of reducing a 2-yr field-residue study (conventional residue carryover) to a 1-yr field study (simulated residue-carryover study) by growing these crops in soil treated with reduced rates of mesotrione applied in the same year. There was a significant difference in mesotrione carryover between 2006 and 2007 and differences between years can be explained by differences in soil pH and soil moisture. The conventional and the simulated residue-carryover studies successfully measured mesotrione persistence and rotational crop sensitivity. Both studies showed that sugar beet was the most-sensitive crop with injury, plant dry weight reduction, and yield loss because of mesotrione residues as high as 100%. Green bean was the next most-sensitive crop to mesotrione residues followed by pea, cucumber, and soybean. The simulated residue-carryover study provided a more-rigorous test of rotational crop sensitivity to mesotrione residues than the conventional residue-carryover study, especially at higher rates for the more-sensitive crops. For the other crops, responses to mesotrione residues were similar between the conventional and simulated residue-carryover studies.

Se realizaron dos estudios de residualidad en campo desde 2005 a 2007 en Simcoe, Ontario, Canadá, para evaluar los efectos de los residuos de mesotrione en el suelo sobre el daño, el peso seco de planta y el rendimiento de la remolacha azucarera, el pepino, el guisante, la vainica y la soya, y para verificar el potencial de reducir un estudio de residualidad de 2 años bajo condiciones de campo (residualidad convencional) a un estudio de campo de 1 año (estudio de residualidad simulada) al crecer estos cultivos en suelo tratado con dosis reducidas de mesotrione aplicado en el mismo año. Hubo una diferencia significativa en la residualidad de mesotrione entre 2006 y 2007 y las diferencias entre años pueden ser explicadas por diferencias en el pH y la humedad del suelo. Los estudios de residualidad convencional y simulada midieron exitosamente la persistencia de mesotrione y la sensibilidad de los cultivos de rotación. Ambos estudios mostraron que la remolacha azucarera fue el cultivo más sensible a los residuos de mesotrione con daño, reducción de peso seco de planta y pérdida de rendimiento de hasta 100%. La vainica fue el siguiente cultivo más sensible a los residuos de mesotrione, seguida por el guisante, el pepino y la soya. El estudio de residualidad simulada brindó una prueba más rigurosa de la sensibilidad a los residuos de mesotrione de los cultivos de rotación que el estudio de residualidad convencional, especialmente a las dosis más altas para los cultivos más sensibles. Para el resto de cultivos, las respuestas a los residuos de mesotrione fueron similares entre los estudios de residualidad convencional y simulada.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2011. Callisto® herbicide approved pamphlet. Reg. 27833 2011-04-07. Guelph, ON : Syngenta Crop Protection Canada, Inc. 17 p.Google Scholar
Barnes, C. J. and Lavy, T. L. 1991. Injury and yield response of selected crops to imazaquin and norflurazon residues. Weed Technol. 5 :598606.Google Scholar
Chaabane, H., Vulliet, E., Calvayrac, C., Coste, C. M., and Cooper, J. F. 2008. Behaviour of sulcotrione and mesotrione in two soils. Pest Manag. Sci. 64 :8693.Google Scholar
Dyson, J. S., Beulke, S., Brown, C. D., and Lane, M. C. G. 2002. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J. Environ. Qual. 31 :613618.Google Scholar
Felix, J., Doohan, D. J., and Bruins, D. 2007. Differential vegetable crop responses to mesotrione soil residues a year after application. Crop Prot. 26 :13951403.Google Scholar
Grey, T. L., Prostko, E. P., Bednarz, C. W., and Davis, J. W. 2005. Cotton (Gossypium hirsutum) response to simulated imazapic residues. Weed Technol. 19 :10451049.Google Scholar
Maeghe, L., Eelen, H., and Bulcke, R. 2002. Soil persistence of 4-HPPD-inhibitors in different soil types. Meded. Fac. Landbouwkd. Toegep. Biol. Wet. Univ. Gent 67 :383391.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T.E.M., Hawkes, T. R., Holt, D. C., Townson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 57 :120128.Google Scholar
Ontario Ministry of Agriculture, Food and Rural Affairs. 2007. 2006 Census of Agriculture and Strategic Policy Branch. Ontario Farm Statistics. Southern Ontario Region: http://www.omafra.gov.on.ca/english/stats/county/southern_ontario.htm. Accessed: February 29, 2012.Google Scholar
Ontario Processing Vegetable Growers. 2001. Ontario Processing Vegetable Growers 2000 Information Handbook. London, ON : OPVG. 36 p.Google Scholar
Presant, E. W. and Acton, C. J. 1984. Soils of the Regional Municipality of Haldimand-Norfolk. Guelph, ON : Land Resource Research Institute, Agriculture Canada Rep. No. 57 of the Ontario Institute of Pedology. 111 p.Google Scholar
Prisbylla, M. P., Onisko, B. C., Shribbs, J. M., Adams, D. O., Liu, Y., Ellis, M. K., Hawkes, T. R., and Mutter, L. C. 1993. The novel mechanism of action of the herbicidal triketones. Pages 731738 in Proceedings of the 1993 Brighton Crop Protection Conference—Weeds. Brighton, UK : British Crop Protection Council.Google Scholar
Rabaey, T. L. and Harvey, R. G. 1997. Sweet corn (Zea mays) hybrids respond differently to simulated imazethapyr carryover. Weed Technol. 11 :9297.Google Scholar
Robinson, D. E. 2008. Atrazine accentuates carryover injury from mesotrione in vegetable crops. Weed Technol. 22 :641645.Google Scholar
Rouchaud, J., Neus, O., Eelen, H., and Bulcke, R. 2000. Dissipation and mobility of the herbicide mesotrione in the soil of corn crops. Meded. Fac. Landbouwkd. Toegep. Biol. Wet. Univ. Gent 65 :5158.Google Scholar
Soltani, N., Sikkema, P. H., and Robinson, D. E. 2007. Response of four market classes of dry bean to mesotrione soil residues. Crop Prot. 26 :16551659.Google Scholar
Sutton, P. B., Foxon, G. A., Beraud, J. M., Anderdon, J., and Wichert, R. 1999. Integrated weed management systems for maize using mesotrione, nicosulfuron and acetochlor. Pages 225230 in Proceedings of the 1999 Brighton Crop Protection Conference—Weeds. Brighton, UK : British Crop Protection Council.Google Scholar
Torma, M., Radvany, B., and Hodi, L. 2004. Effect of mesotrione residues on following crops. Z. Pflanzenkr. Pflanzenschutz XIX :801805.Google Scholar
Weber, J. B., Shea, P. H., and Weed, S. B. 1986. Fluridone retention and release in soils. Soil Sci. Soc. Am. J. 50 :582588.Google Scholar
Wiatrak, P. J., Wright, D. L., and Marois, J. J. 2009. Influence of imazapic herbicide simulated carryover on cotton growth, yields, and lint quality. Crop Manag. DOI:.Google Scholar
Wichert, R. A., Townson, J. K., Bartlett, D. W., and Foxon, G. A. 1999. Technical review of mesotrione, a new maize herbicide. Pages 105110 in Proceedings of the 1999 Brighton Crop Protection Conference—Weeds. Brighton, UK : British Crop Protection Council.Google Scholar
Zhang, W., Webster, E. P., and Braverman, M. P. 2002. Rice (Oryza sativa) response to rotational crop and rice herbicide combinations. Weed Technol. 16 :340345.Google Scholar