Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T03:19:11.506Z Has data issue: false hasContentIssue false

Control of Protoporphyrinogen Oxidase Inhibitor–Resistant Common Waterhemp (Amaranthus rudis) in Corn and Soybean

Published online by Cambridge University Press:  20 January 2017

Douglas E. Shoup
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Kassim Al-Khatib*
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: [email protected]

Abstract

Field experiments were conducted in 2001 and 2002 to evaluate the efficacy of herbicides on protoporphyrinogen oxidase (protox, EC 1.3.3.4) inhibitor–resistant common waterhemp in corn and soybean. All corn herbicides tested gave greater than 90% common waterhemp control by 8 wk after postemergence herbicide treatment (WAPT). In soybean, common waterhemp control was less than 40% by 8 WAPT with postemergence protox-inhibiting herbicides lactofen and acifluorfen. However, preemergence protox-inhibiting herbicides sulfentrazone and flumioxazin gave greater than 85% common waterhemp control in both years. The greatest common waterhemp control in soybean was with glyphosate alone, alachlor + metribuzin, alachlor followed by (fb) glyphosate, and S-metolachlor + metribuzin fb glyphosate.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

∗ Publication 03-287-5 Kansas State University Agricultural Experiment Station Journal Series.

References

Literature Cited

Amsellem, Z., Jansen, M. A. K., Driesenaar, A. R. J., and Gressel, J. 1993. Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza . Plant Physiol. 103:10971106.CrossRefGoogle ScholarPubMed
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10:570575.CrossRefGoogle Scholar
Battles, B., Hartzler, B., and Buhler, D. 1998. Effect of common waterhemp emergence date in soybean on growth and competitiveness. Proc. N. Cent. Weed Sci. Soc. 53:145146.Google Scholar
Baumgartner, J. R., Al-Khatib, K., and Currie, R. S. 1999. Cross-resistance of imazethapyr-resistant common sunflower (Helianthus annuus) to selected imidazolinone, sulfonylurea, and triazolopyrimidine herbicides. Weed Technol. 13:489493.Google Scholar
Beale, S. I. and Weinstein, J. D. 1990. Tetrapyrrole metabolism in photosynthetic organisms. in Daily, H. A., ed. Biosynthesis of Heme and Chlorophylls. New York: McGraw-Hill. Pp. 287391.Google Scholar
Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90:11751181.CrossRefGoogle ScholarPubMed
Bensch, C. N., Horak, M. J., and Peterson, D. E. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Coetzer, E., Al-Khatib, K., and Loughin, T. M. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 49:813.CrossRefGoogle Scholar
Comfort, S. D., Gaussoin, R. E., and Kappler, B. F. et al. 2003. Guide for Weed Management in Nebraska. Lincoln, NE: University of Nebraska Cooperative Extension EC02-130-D. Pp. 3032.Google Scholar
Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P. Jr., and Matsumoto, H. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465473.CrossRefGoogle Scholar
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.Google Scholar
Gronwald, J. W. 1997. Resistance to PS II inhibitor herbicides. in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. Norwell, MA: Kluwer Academic. Pp. 5359.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. in Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society. Pp. 1016.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.Google Scholar
Hervieu, F. and Vaucheret, H. 1996. A single amino acid change in acetolactate synthase confers resistance to valine in tobacco. Mol. Gen. Genet. 251:220224.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
Jacobs, J. M. and Jacobs, N. J. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids. Plant Physiol. 101:11811187.CrossRefGoogle ScholarPubMed
Jacobs, J. M., Jacobs, N. J., Sherman, T. D., and Duke, S. O. 1991. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organella and plasma membrane enriched fractions of barley. Plant Physiol. 97:197203.CrossRefGoogle Scholar
Kansas State University. 2003. Weather Data Library: Precipitation by Counties:. Web page: http://ftp.oznet.ksu.edu/wdl/drought/BR.PCP. Accessed: May 21, 2003.Google Scholar
Lee, H. J., Duke, M. V., and Duke, S. O. 1993. Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare) leaves. Plant Physiol. 102:881889.Google Scholar
Lehnen, L. P., Sherman, T. D., Becerril, J. M., and Duke, S. O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37:239248.Google Scholar
Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P., and Douce, R. 1992. Localization within the chloroplast of protoporphyrinogen oxidase the target enzyme for diphenyl ether-like herbicides. J. Biol. Chem. 267:45464651.CrossRefGoogle Scholar
Mayo, M. M., Horak, M. J., Peterson, D. E., and Boyer, J. E. 1995. Differential control of four Amaranthus species by six postemergence herbicides in soybean (Glycine max). Weed Technol. 9:141147.Google Scholar
Olson, B. L. S., Al-Khatib, K., Stahlman, P., and Isakson, P. J. 2000. Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci. 48:541548.Google Scholar
Regehr, D. L., Peterson, D. E., Ohlenbusch, P. D., Fick, W. H., Stahlman, P. W., and Wolf, R. E. 2003. 2003 Chemical Weed Control for Field Crops, Pasture, Rangeland, and Noncropland. Report of Progress 902. Manhattan, KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Pp. 2021.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 51:145150.Google Scholar
Sprague, C. L. and Hager, A. G. 2003. Weed control for corn, soybean, and sorghum. in Illinois Agricultural Pest Management Handbook. Urbana-Champaign, IL: University of Illinois Extension. Pp. 99100.Google Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol. 12:315321.CrossRefGoogle Scholar
Tranel, P. J. and Patzoldt, W. L. 2002. Atrazine resistance in waterhemp (Amaranthus rudis and Amaranthus tuberculatus) that is not site of action mediated. Weed Sci. Soc. Am. Abstr. 42:50.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.CrossRefGoogle Scholar
Valverde, B. E. and Itoh, K. 2001. World rice and herbicide resistance. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL: CRC. Pp. 195249.CrossRefGoogle Scholar
[WSSA] Weed Science Society of America. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 493 p.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus spp. is conferred by a trp to leu mutation in the ALS gene (accession no. U55852). Plant Physiol. 111:1353.Google Scholar
Yadav, N., McDevitt, R. E., Benard, S., and Falco, S. C. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. USA. 83:44184422.Google Scholar