Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T06:18:56.289Z Has data issue: false hasContentIssue false

Confirmation, Control, and Physiology of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) in Arkansas

Published online by Cambridge University Press:  20 January 2017

Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Dilpreet Riar
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Prashant Jha
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Robert C. Scott
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, P.O. Box 357, Lonoke, AR 72086
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate-resistant giant ragweed in Arkansas was reported in 2005. A study was conducted to (1) confirm and characterize the glyphosate resistance in giant ragweed, (2) determine if reduced absorption or translocation is the mechanism of glyphosate resistance in giant ragweed, and (3) evaluate the efficacy of nine POST-applied soybean herbicides to control glyphosate-resistant and -susceptible giant ragweed. Based on the rate required to kill 50% of plants (LD50 values), resistant giant ragweed biotypes from Greene and Jefferson counties were 2.3- to 7.2-fold less sensitive to glyphosate compared to susceptible biotypes. Glyphosate absorption and translocation for glyphosate-resistant and -susceptible biotypes was similar at 24 and 72 h after treatment. Thus, differential absorption or translocation is not a mechanism of glyphosate resistance in this resistant giant ragweed biotype. Control of resistant giant ragweed biotypes with glyphosate at a labeled field application rate of 840 g ha−1 was only 60% or less compared to complete control of a susceptible giant ragweed biotype. However, bentazon, carfentrazone, cloransulam, and fomesafen controlled both biotypes more than 95%.

Se reportó en 2005 en Arkansas la resistencia de Ambrosia trifida a glifosato. Se realizó un estudio para (a) confirmar y caracterizar la resistencia de A. trifida al glifosato, (b) evaluar la eficacia de nueve herbicidas aplicados POST en soya para controlar A. trifida resistente y susceptible al glifosato y (c) determinar si la absorción reducida o la translocación es el mecanismo de resistencia al glifosato en esta maleza. Basándose en los valores LD50 (dosis necesaria para matar el 50% de las plantas), los biotipos resistentes de Ambrosia de los condados de Greene y Jefferson fueron 2.3 a 7.2 veces menos sensibles al glifosato comparados con los biotipos susceptibles. El control de biotipos resistentes con glifosato aplicado en el campo a la dosis recomendada de 840 g ha−1, fue solamente 60% o menos, comparado con el control completo de un biotipo susceptible de la maleza. Sin embargo, bentazon, carfentrazone, cloransulam y fomesafen controlaron ambos biotipos más del 95%. La absorción y translocación del glifosato fue similar para los biotipos resistentes y susceptibles 24 y 72 horas posteriores al tratamiento. Por lo tanto, la absorción o translocación diferencial no es un mecanismo de resistencia al glifosato en este biotipo de A. trifida resistente.

Type
Weed Managment—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bassett, I. J. and Crompton, C. W. 1982. The biology of Canadian weeds, 55: Ambrosia trifida L. Can. J. Plant Sci. 62:10021010.CrossRefGoogle Scholar
Baysinger, J. A. and Sims, B. D. 1992. Giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 6:1318.CrossRefGoogle Scholar
Brewer, C. E. and Oliver, L. R. 2009. Confirmation and resistance mechanisms in glyphosate-resistant common ragweed (Ambrosia artemisiifolia) in Arkansas. Weed Sci. 57:567573.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. H. 2006. Glyphosate resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Dinelli, G., Marotti, I., Bonetti, A., Minelli, M., Catizone, P., and Barnes, J. 2006. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pest. Biochem. Physiol. 86:3041.CrossRefGoogle Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and Jacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation and metabolism. Weed Sci. 52:498505.CrossRefGoogle Scholar
Franey, R. J. and Hart, S. E. 1999. Time of application of cloransulam for giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 13:825828.CrossRefGoogle Scholar
Ge, X., d'Avignon, D. A., Ackerman, J. J. H., and Sammons, R. D. 2009. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66:345348.CrossRefGoogle Scholar
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. F. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.CrossRefGoogle Scholar
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.wssa.net. Accessed: October 27, 2010.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.CrossRefGoogle Scholar
Johnson, B., Barnes, J., Gibson, K., and Weller, S. 2004. Late-season weed escapes in Indiana soybean fields. Crop Manag. DOI:10.1094/CM-2004-0923-01-BR.CrossRefGoogle Scholar
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:8489.CrossRefGoogle Scholar
Loux, M. M. and Berry, M. A. 1991. Use of a grower survey for estimating weed problems. Weed Technol. 5:460466.CrossRefGoogle Scholar
Matthews, S. G., Talbert, R. E., Smith, K. L., Barrentine, J. L., and McClelland, M. R. 2004. Glyphosate resistance in horseweed (Conyza canadensis) populations in Arkansas. Proc. South. Weed Sci. Soc. 57:4.Google Scholar
Michitte, P., De Prado, R., Espinosa, N., Ruiz-Santaella, J. P., and Gauvrit, C. 2007. Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci. 55:435440.CrossRefGoogle Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17:195201.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Norsworthy, J. K., Jha, P., Steckel, L. E., and Scott, R. C. 2010. Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol. 24:6470.CrossRefGoogle Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci. 50:299305.CrossRefGoogle Scholar
Perez-Jones, A., Park, K-W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta 226:395404.CrossRefGoogle ScholarPubMed
Stachler, J. M., Loux, M. M., Johnson, W. G., and Westhoven, A. M. 2007. Characterizing the response to glyphosate of giant ragweed (Ambrosia trifida) biotypes from Ohio and Indiana. http://www.wssa.net/Meetings/WSSAAbstracts/abstractsearch.php. Accessed: November 8, 2010. [Abstract]Google Scholar
Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. New York McGraw-Hill. 633 p.Google Scholar
Taylor, J. B., Loux, M. M., Harrison, S. K., and Regnier, E. 2002. Response of ALS-resistant common ragweed (Ambrosia artemiisiifolia) and giant ragweed (Ambrosia trifida) to ALS-inhibiting and alternative herbicides. Weed Technol. 16:815825.CrossRefGoogle Scholar
[USDA NASS] U. S. Department of Agriculture–National Agricultural Statistics Service. 2006. Agricultural Chemical Usage: 2006 Field Crops Summary. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC//2000s/2006/AgriChemUsFC-05-17-2006.pdf. Accessed: November 8, 2008.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed in Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Vila-Aiub, M. M., Balbi, M. C., Gundel, P. E., Ghersa, C. M., and Powles, S. B. 2007. Evolution of glyphosate-resistant johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci. 55:566571.CrossRefGoogle Scholar
Wakelin, A. M. and Preston, C. 2006. Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci. 54:212219.CrossRefGoogle Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. South. Weed Sci. Soc. 58:291306.Google Scholar
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.CrossRefGoogle Scholar
Westhoven, A. M., Johnson, W. G., Stachler, J. M., and Loux, M. M. 2007. Management of giant ragweed (Ambrosia trifida) biotypes in glyphosate-resistant soybean in the eastern Cornbelt. http://www.wssa.net/Meetings/WSSAAbstracts/abstractsearch.php. Accessed: November 8, 2010. [Abstract]Google Scholar
Wiesbrook, M. L., Johnson, W. G., Hart, S. E., Bradley, P. R., and Wax, L. M. 2001. Comparison of weed management systems in narrow-row, glyphosate- and glufosinate-resistant soybean (Glycine max). Weed Technol. 15:122128.CrossRefGoogle Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.CrossRefGoogle Scholar
Yu, Q., Abdallah, I., Han, H. P., Owen, M., and Powles, S. B. 2009. Distinct nontarget-site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum populations. Planta 230:713723.CrossRefGoogle Scholar
Zelaya, I. A. and Owen, M. D. K. 2004. Evolved resistance to acetolactate synthase–inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci. 52:538548.CrossRefGoogle Scholar