Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T10:21:52.318Z Has data issue: false hasContentIssue false

Confirmation and Control of Glyphosate-Resistant Common Waterhemp (Amaranthus rudis) in Nebraska

Published online by Cambridge University Press:  20 January 2017

Debalin Sarangi
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Lowell D. Sandell
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Stevan Z. Knezevic
Affiliation:
Northeast Research and Extension Center, Haskell Agricultural Laboratory, University of Nebraska–Lincoln, Concord, NE 68728
Jatinder S. Aulakh
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
John L. Lindquist
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Suat Irmak
Affiliation:
Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE 68583
Amit J. Jhala*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glyphosate-resistant common waterhemp is a difficult-to-control annual broadleaf weed that has become a serious management challenge for growers in Nebraska and other states in the United States. The objectives of this study were to confirm glyphosate-resistant common waterhemp in Nebraska by quantifying level of resistance in a dose-response study, and to determine the sensitivity and efficacy of POST soybean herbicides for controlling suspected glyphosate-resistant common waterhemp biotypes. Seeds of suspected glyphosate-resistant common waterhemp biotypes were collected from seven eastern Nebraska counties. Greenhouse dose-response experiments were conducted to evaluate the response of common waterhemp biotypes to nine rates of glyphosate (0 to 16×). Common waterhemp biotypes were 3- to 39-fold resistant to glyphosate depending on the biotype being investigated and the susceptible biotype used for comparison. Results of the POST soybean herbicides efficacy experiment suggested that glyphosate-resistant biotypes, except a biotype from Pawnee County, had reduced sensitivity to acetolactate synthase (ALS)–inhibiting herbicides (chlorimuron-ethyl, imazamox, imazaquin, imazethapyr, and thifensulfuron-methyl). Glufosinate and protoporphyrinogen oxidase (PPO)–inhibiting herbicides (acifluorfen, fluthiacet-methyl, fomesafen, and lactofen) provided ≥ 80% control of glyphosate-resistant common waterhemp at 21 d after treatment (DAT). This study confirmed the first occurrence of glyphosate-resistant common waterhemp in Nebraska, and also revealed reduced sensitivity to ALS-inhibiting herbicides in most of the biotypes tested in this study.

Amaranthus rudis resistente a glyphosate es una maleza anual de hoja ancha difícil de controlar y que se ha convertido en un reto serio de manejo para productores en Nebraska y otros estados en los Estados Unidos. Los objetivos de este estudio fueron confirmar la resistencia a glyphosate de A. rudis en Nebraska, cuantificando el nivel de resistencia mediante estudios de respuesta a dosis, y determinar la sensibilidad y la eficacia de herbicidas POST para soja para el control de biotipos de A. rudis que se sospecha son resistentes a glyphosate. En siete condados del este de Nebraska, se colectaron semillas de biotipos de A. rudis que se sospechaba eran resistentes a glyphosate. Se realizaron experimentos de respuesta a dosis en invernadero, para evaluar la respuesta de biotipos de A. rudis a nueve dosis de glyphosate (0 a 16X). Biotipos de A. rudis fueron de 3 a 39 veces más resistentes a glyphosate, dependiendo del biotipo investigado y del biotipo susceptible usados en la comparación. Los resultados del experimento sobre la eficacia de herbicidas POST para soja sugirieron que los biotipos resistentes a glyphosate, con la excepción del biotipo proveniente del condado Pawnee, tuvieron una sensibilidad reducida a los herbicidas inhibidores de acetolactate synthase (ALS) (chlorimuron-ethyl, imazamox, imazaquin, imazethapyr, y thifensulfuron-methyl). Glufosinate y los herbicidas inhibidores de protoporphyrinogen oxidase (PPO) (acifluorfen, fluthiacet-methyl, fomesafen, y lactofen) brindaron ≥ 80% control de A. rudis resistente a glyphosate a 21 d después del tratamiento (DAT). Este estudio confirmó el primer caso de A. rudis resistente a glyphosate en Nebraska, y también reveló la sensibilidad reducida a herbicidas inhibidores de ALS en la mayoría de los biotipos evaluados en este estudio.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Anderson, DD, Roeth, FW, Martin, AR (1996) Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575 CrossRefGoogle Scholar
Anonymous (2012) Roundup PowerMax® herbicide product label. Monsanto Publication No. 63027K5-10. St. Louis, MO: Monsanto Co Google Scholar
Aulakh, JS, Price, AJ, Enloe, SF, Santen, EV, Wehtje, G, Patterson, MG (2012) Integrated Palmer amaranth management in glufosinate-resistant cotton: I. soil-inversion, high-residue cover crops and herbicide regimes. Agronomy 2:295311 CrossRefGoogle Scholar
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 Google Scholar
Bernards, ML, Crespo, RJ, Kruger, GR, Gaussoin, R, Tranel, PJ (2012) A waterhemp (Amaranthus tuberculatus) population resistant to 2,4–D. Weed Sci 60:379384 CrossRefGoogle Scholar
Brookes, G, Barfoot, P (2008) Global impact of biotech crops: socio-economic and environmental effects. Ag Bio Forum 11:2138 Google Scholar
Bryson, CT, DeFelice, MS, eds (2010) Weeds of the Midwestern United States and Central Canada. Athens, GA: University of Georgia Press. 39 pGoogle Scholar
Dill, GM, CaJacob, CA, Padgette, SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326331 Google Scholar
Dill, GM, Sammons, RD, Feng, PCC, Kohn, F, Kretzmer, K, Mehrsheikh, A, Bleeke, M, Honegger, JL, Farmer, D, Wright, D, Haupfear, EA (2010) Glyphosate: discovery, development, applications, and properties. Pages 133 in Nandula, VK, ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ: Wiley Google Scholar
Duff, MG, Al-Khatib, K, Peterson, DE (2009) Relative competitiveness of protoporphyrinogen oxidase-resistant common waterhemp (Amaranthus rudis). Weed Sci 57:169174 CrossRefGoogle Scholar
Duke, SO, Powles, SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319325 Google Scholar
Foes, MJ, Liu, L, Tranel, PJ, Wax, LM, Stoller, EW (1998) A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci 46:515520 Google Scholar
Franz, JE, Mao, MK, Sikorski, JA (1997) Glyphosate: A Unique Global Herbicide. Washington, DC: American Chemical Society Monograph 189. 653 pGoogle Scholar
Gianessi, LP (2008) Economic impacts of glyphosate-resistant crops. Pest Manag Sci 64:346352 CrossRefGoogle ScholarPubMed
Green, JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci. 57:108117.CrossRefGoogle Scholar
Hager, AG, Wax, LM, Stoller, EW, Bollero, GA (2002) Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci 50:607610 CrossRefGoogle Scholar
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584 Google Scholar
Hausman, NE, Singh, S, Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:258261 Google Scholar
Heap I (2014a) The international Survey of Herbicide Resistant Weeds. Herbicide Resistant Tall Waterhemp Globally. http://weedscience.org/Summary/Species.aspx?WeedID=219. Accessed July 13, 2014Google Scholar
Heap I (2014b) The international Survey of Herbicide Resistant Weeds. Weeds Resistant to EPSP Synthase Inhibitors. http://weedscience.org/Summary/MOA.aspx?MOAID=12. Accessed August 8, 2014Google Scholar
Herrmann, KM, Weaver, LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473503 Google Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Horak, MJ, Peterson, DE (1995) Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195 Google Scholar
James, C (2013) Global Status of Commercialized Biotech/GM Crops: 2013. ISAAA Brief No. 46. http://www.isaaa.org/Resources/publications/briefs/46/default.asp. Accessed March 27, 2014Google Scholar
Jhala, AJ (2014) Herbicide-resistant weeds. Pages 1819 in Jhala, AJ, Klein, RN, Knezevic, SZ, Kruger, GR, Reicher, ZJ, Sandell, LD, Young, SL, Wilson, RG, Shea, PJ, Ogg, CL, eds. 2014 Guide for Weed Management in Nebraska with Insecticide and Fungicide Information. Lincoln, NE: University of Nebraska–Lincoln Extension Google Scholar
Jhala, AJ, Sandell, LD, Rana, N, Kruger, GR, Knezevic, SZ (2014) Confirmation and control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide- resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol 28:2838 Google Scholar
Johnson, DB, Norsworthy, JK, Scott, RC (2014) Herbicide programs for controlling glyphosate-resistant johnsongrass (Sorghum halepense) in glufosinate-resistant soybean. Weed Technol 28:1018 CrossRefGoogle Scholar
Kaur, S, Sandell, LD, Lindquist, JL, Jhala, AJ (2014) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in glufosinate-resistant soybean (Glycine max). Weed Technol 28:569577 Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 CrossRefGoogle Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461 CrossRefGoogle Scholar
Light, GG, Mohammed, MY, Dotray, PA, Chandler, JM, Wright, RJ (2011) Glyphosate-resistant common waterhemp (Amaranthus rudis) confirmed in Texas. Weed Technol 25:480485 Google Scholar
Lovell, ST, Wax, LM, Horak, MJ, Peterson, DE (1996) Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci 44:789794 Google Scholar
Nordby, D, Hartzler, B, Bradley, K (2007) Biology and Management of Waterhemp. Purdue Extension. GWC-13. 3 pGoogle Scholar
Okada, M, Jasieniuk, M (2014) Inheritance of glyphosate resistance in hairy fleabane (Conyza bonariensis) from California. Weed Sci 62:258266 Google Scholar
Patzoldt, WL, Tranel, PJ, Hager, AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:3036 CrossRefGoogle Scholar
Powles, SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360365 Google Scholar
Shoup, DE, Al-Khatib, K, Peterson, DE (2003) Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase–inhibiting herbicides. Weed Sci 51:145150 Google Scholar
Smith, DA, Hallett, SG (2006) Variable response of common waterhemp (Amaranthus rudis) populations and individuals to glyphosate. Weed Technol 20:466471 Google Scholar
Steckel, LE, Sprague, CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci 52:359364 Google Scholar
Steckel, LE, Sprague, CL, Hager, AG, Simmons, FW, Bollero, GA (2003) Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Sci 51:898903 Google Scholar
[USDA] U.S. Department of Agriculture (2014) Crop Acerage. http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-2014.pdf. Accessed September 22, 2014Google Scholar
Wortman, SE (2014) Integrating weed and vegetable crop management with multifunctional air-propelled abrasive grits. Weed Technol 28:243252 Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar