Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T17:08:28.978Z Has data issue: false hasContentIssue false

Comparison of Glufosinate-Based Herbicide Programs for Broad-Spectrum Weed Control in Glufosinate-Resistant Soybean

Published online by Cambridge University Press:  20 January 2017

Jatinder S. Aulakh
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583
Amit J. Jhala*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of the increasing number of glyphosate-resistant weeds, alternate herbicide-resistant crops and herbicides with different modes of action are required to protect crop yield. Glufosinate is a broad-spectrum POST herbicide for weed control in glufosinate-resistant crops, including soybean. The objective of this study was to compare herbicide programs with glufosinate applied singly at late-POST (LPOST) or sequentially at early POST (EPOST) followed by (fb) LPOST applications and PRE herbicides fb EPOST/LPOST glufosinate alone or tank-mixed with acetochlor, pyroxasulfone, or S-metolachlor in glufosinate-resistant soybean. A field experiment was conducted at the South Central Agriculture Laboratory in Clay Center, NE, in 2012 and 2013. Glufosinate applied in a single LPOST or sequential EPOST fb LPOST application controlled common lambsquarters, common waterhemp, eastern black nightshade, green foxtail, large crabgrass, and velvetleaf ≤ 82% and resulted in a weed density of 6 to 10 plants m−2 by the end of the season. Flumioxazin-, saflufenacil-, or sulfentrazone-based premixes provided 84 to 99% control of broadleaf and grass weeds tested in this study at 15 d after PRE application and a subsequent LPOST application of glufosinate alone controlled broadleaf and grass weeds 69 to 93% at harvest, depending on the herbicide program and weed species being investigated. The PRE application of sulfentrazone plus metribuzin fb EPOST glufosinate tank-mixed with acetochlor, pyroxasulfone, or S-metolachlor controlled the tested broadleaf and grass weeds ≥ 90%, reduced density to ≤ 2 plants m−2, and reduced weed biomass to ≤ 10 g m−2 and produced soybean yields of ≥ 4,450 and 3,040 kg ha−1 in 2012 and 2013, respectively. Soybean injury was 0 to 20% from PRE or POST herbicides, or both and was inconsistent, but transient, during the 2-yr study, and it did not affect soybean yield. Sulfentrazone plus metribuzin applied PRE fb glufosinate EPOST tank-mixed with acetochlor, pyroxasulfone, or S-metolachlor provided the highest level of weed control throughout the growing season and increased soybean yield compared with a single LPOST or a sequential EPOST fb LPOST glufosinate application. Additionally, these herbicide programs provide four distinct mechanisms of action that constitute an effective weed-resistance management strategy in glufosinate-resistant soybean.

Debido al creciente número de malezas resistentes a glyphosate, es necesario alternar cultivos resistente a herbicidas con diferentes modos de acción para proteger los rendimientos de los cultivos. Glufosinate es un herbicida POST de amplio espectro para el control de malezas en cultivos resistentes a glufosinate, incluyendo soja. El objetivo de este estudio fue comparar programas de herbicidas con glufosinate aplicado solo en POST-tarde (LPOST), o secuencialmente en POST-temprano (EPOST) seguido de (fb) aplicaciones LPOST, y herbicidas PRE fb glufosinate solo en EPOST/LPOST, o mezclas en tanque con acetochlor, pyroxasulfone, o S-metolachlor, en soja resistente a glufosinate. Se realizó un experimento de campo en el Laboratorio de Agricultura del Centro Sur, en Clay Center, Nebraska, en 2012 y 2013. Glufosinate aplicado solo LPOST o en secuencia EPOST fb LPOST controló Chenopodium album, Amaranthus rudis, Solanum ptychanthum, Setaria viridis, Digitaria sanguinalis, y Abutilon theophrasti ≤ 82% y resultaron en una densidad de malezas de 6 a 10 plantas m−2 al final de la temporada. Premezclas basadas en flumioxazin, saflufenacil, o sulfentrazone brindaron 84 a 99% de control de malezas de hoja ancha y gramíneas evaluadas en este estudio a 15 d después de la aplicación; PRE fb glufosinate solo (EPOST/LPOST) controlaron malezas de hoja ancha y gramíneas 69 a 93% al momento de la cosecha, dependiendo del programa de herbicidas y las especies de malezas investigadas. La aplicación PRE de sulfentrazone más metribuzin fb EPOST con glufosinate mezclado en tanque con acetochlor, pyroxasulfone, o S-metolachlor controló las especies de malezas de hoja ancha y gramíneas evaluadas ≥ 90%, redujo la densidad ≤ 2 plantas m−2, redujo la biomasa de malezas ≤ 10 g m−2, y produjo rendimientos de soja ≥ 4,450 y 3,040 kg ha−1, en 2012 y 2013, respectivamente. El daño en la soja fue 0 a 20% en los tratamientos PRE, POST, o ambos, y fue inconsistente pero fue transitorio, durante los 2 años del estudio, y no afectó el rendimiento de la soja. Sulfentrazone más metribuzin aplicados PRE fb glufosinate EPOST mezclado en tanque con acetochlor, pyroxasulfone, o S-metolachlor brindó el mayor nivel de control de malezas a lo largo de la temporada de crecimiento e incrementó el rendimiento de la soja al compararse con una aplicación de glufosinate LPOST o aplicaciones secuenciales EPOST fb EPOST. Adicionalmente, estos programas de herbicidas permitieron el uso de cuatro mecanismos de acción distintos lo que constituye una estrategia efectiva para el manejo de resistencia en soja resistente a glufosinate.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

References

Literature Cited

Anonymous (2015) Zidua® supplemental label. EPA Registration No. 7969-338. Research Triangle Park, NC: BASF. 12 pGoogle Scholar
Aulakh, JS, Price, AJ, Balkcom, KS (2011) Weed management and cotton yield under two row spacings in conventional and conservation tillage systems utilizing conventional, glufosinate-, and glyphosate-based weed management systems. Weed Technol 25:542547 Google Scholar
Aulakh, JS, Price, AJ, Enloe, SF, van Santen, E, Wehtje, G, Patterson, MG (2012) Integrated Palmer amaranth management in glufosinate-resistant cotton, I: soil-inversion, high-residue cover crops and herbicide regimes. Agronomy 2:295311 Google Scholar
Aulakh, JS (2013) Management of Palmer amaranth in glufosinate-resistant cotton and cogongrass eradication in the southern United States. Ph.D Dissertation. Auburn, AL: Auburn University. 89 pGoogle Scholar
Aulakh, JS, Price, AJ, Enloe, SF, Wehtje, G, Patterson, MG (2013a) Integrated Palmer amaranth management in glufosinate-resistant cotton, II: primary, secondary and conservation tillage. Agronomy 3:2842 Google Scholar
Avila-Garcia, WV, Sanchez-Olguin, E, Hulting, AG, Mallory-Smith, C (2012) Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Pest Manag Sci 68:12481254 Google Scholar
Barnes, JW, Oliver, LR (2004) Preemergence weed control in soybean with cloransulam. Weed Technol 18:10771090 Google Scholar
Beyers, JT, Smeda, R J, William, GJ (2002) Weed management programs in glufosinate-resistant soybean (Glycine max). Weed Technol 16:267273 Google Scholar
Bruce, JA, Kells, JJ (1990) Horseweed (Conyza canadensis) control in no tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Technol 4:642647 CrossRefGoogle Scholar
Bruff, SA, Shaw, DR (1992a) Early season herbicide applications for weed control in stale seedbed soybeans (Glycine max). Weed Technol 6:3644 Google Scholar
Bruff, SA, Shaw, DR (1992b) Tank-mix combinations for weed control in stale seedbed soybeans (Glycine max). Weed Technol 6:4551 Google Scholar
Chahal, PS, Jhala, AJ (2015) Herbicide programs for control of glyphosate-resistant volunteer corn in glufosinate-resistant soybean. Weed Technol 19:431443 Google Scholar
Chahal, PS, Kruger, G, Blanco-Canqui, H, Jhala, AJ (2014) Efficacy of preemergence and postemergence soybean herbicides for control of glufosinate-, glyphosate-, and imidazolinone-resistant volunteer corn. J. Agric Sci 6:131140 Google Scholar
Culpepper, AS, Grey, TM, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54: 620626 Google Scholar
Culpepper, AS, York, AC, Batts, RB, Jennings, KM (2000) Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol 14:7788 Google Scholar
Dayan, FE, Green, HM, Weete, JD, Hancock, G (1996) Postemergence activity of sulfentrazone: effect of surfactants and leaf surfaces. Weed Sci 44:797803 Google Scholar
Devine, MS, Duke, O, Fedtke, C (1993) Inhibition of amino acid biosynthesis. Pages 252263 in Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Diggle, AJ, Neve, PB, Smith, EP (2003) Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43:371382 CrossRefGoogle Scholar
Dirks, JT, Johnson, WG, Smeda, RJ, Wiebold, WJ, Massey, RE (2000) Use of preplant sulfentrazone in no-till, narrow-row, glyphosate-resistant Glycine max . Weed Sci 48:628639 CrossRefGoogle Scholar
Dröge, W, Broer, I, Puhler, A (1992) Transgenic plants containing the phosphinothricin-N-acetyl transferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142151 Google Scholar
Duff, MG, Al-Khatib, K, Peterson, DE (2008) Efficacy of preemergence application of S-metolachlor plus fomesafen or metribuzin as an element in the control of common waterhemp (Amaranthus rudis Sauer) in soybeans. Trans Kans Acad Sci 111:230238 Google Scholar
Ellis, JM, Griffin, JL (2002) Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol 16:541547 Google Scholar
Fernandez-Cornejo, J, Caswell, M (2006) The first decade of genetically engineered crops in the United States [electronic report]. Econ Inf Bull 11, 36 pGoogle Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Geier, PW, Stahlman, PW, Regehr, DL, Olson, BL (2009) Preemergence herbicide efficacy and phytotoxicity in grain sorghum. Weed Technol 23:197201 Google Scholar
Gonzini, LC, Hart, SE, Wax, LM (1999) Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol 13:354360 Google Scholar
Grichar, WJ (2006) Using soil-applied herbicides in glyphosate-resistant soybeans along the Texas Gulf Coast. Weed Technol 20:633639 Google Scholar
Haas, P, Muller, F. 1987. Behaviour of glufosinate-ammonium in weeds. Pages 10751082 in Proceedings of the 10th BCPC Congress—Weeds. Alton, UK: British Crop Production Council Google Scholar
Hausman, NE, Tranel, PJ, Riechers, DE, Maxwell, DJ, Gonzini, LC, Hager, AG (2013) Responses of an HPPD inhibitor-resistant waterhemp (Amaranthus tuberculatus) population to soil-residual herbicides. Weed Technol 27:704711 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed March 20, 2014Google Scholar
Heatherly, LG, Elmore, CD, Spurlock, SR (2002) Weed management systems for conventional and glyphosate-resistant soybean with and without irrigation. Agron J 94:14191428 Google Scholar
Hinchee, MAW, Padgette, SR, Kishore, GM, Delannay, X, Fraley, RT (1993) Herbicide-tolerant crops. Pages 243263 in Kung, S, Wu, R, eds. Transgenic Plants. San Diego, CA: Academic CrossRefGoogle Scholar
Hoffner, AE, Jordan, DL, York, AC, Dunphy, EJ, Everman, WJ (2012) Management of Palmer amaranth (Amaranthus palmeri) in glufosinate-resistant soybean (Glycine max) with sequential applications of herbicides. ISRN Agron 2012:131650. DOI: Google Scholar
Jalaludin, A, Ngim, J, Bali, BB, Zazali, A (2010) Preliminary findings of potentially resistant goosegrass (Eleusine indica) to glufosinate-ammonium in Malaysia. Weed Biol Manag 10:256260 Google Scholar
Jhala, AJ (2015) Herbicide-resistant weeds. Pages 1819 in Knezevic, SZ, Jhala, AJ, Klein, RN, Kruger, GR, Reicher, ZJ, Wilson, RG, Shea, PJ, Ogg, CL, eds. 2015 Guide for Weed Management in Nebraska with Insecticide and Fungicide Information. Lincoln, NE: University of Nebraska–Lincoln Extension Google Scholar
Johnson, G, Breitenbach, F, Behnken, L, Miller, R, Hoverstad, T, Gunsolus, J (2012) Comparison of herbicide tactics to minimize species shifts and selection pressure in glyphosate-resistant soybean. Weed Technol 26:189194 Google Scholar
Knezevic, SZ, Datta, A, Scott, J, Klein, RN, Golus, J (2009) Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol 23:507512 Google Scholar
Krausz, RF, Young, BG (2003) Sulfentrazone enhances weed control of glyphosate in glyphosate-resistant soybean (Glycine max). Weed Technol 17:249255 Google Scholar
Lanie, AJ, Griffin, JL, Vidrine, PR, Reynolds, DB (1994) Herbicide combinations for soybean (Glycine max) planted in stale seedbed. Weed Technol 8:1722 Google Scholar
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate-resistant waterhemp control and economic returns with herbicide treatments in soybean. Weed Technol 23:5461 Google Scholar
Mahoney, KJ, Shropshire, C, Sikkema, PH (2014) Weed management in conventional- and no-till soybean using flumioxazin/pyroxasulfone. Weed Technol 28:298306 Google Scholar
Norris, JL, Shaw, DR, Snipes, CE (2002) Influence of row spacing and residual herbicides on weed control in glufosinate-resistant soybean (Glycine max). Weed Technol 16: 319325 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Owen, MDK, Zelaya, IA (2005) Herbicide-resistance crops and weed resistance to herbicides. Pest Manag Sci 61:301311 Google Scholar
Payne, SA, Oliver, LR (2000) Weed control programs in drilled glyphosate-resistant soybean. Weed Technol 14:413422 Google Scholar
Price, AJ, Balkcom, KS, Culpepper, SA, Kelton, JA, Nichols, RL, Schomberg, H (2011) Glyphosate-resistant Palmer amaranth: a threat to conservation tillage. J Soil Water Conserv 66:265275 Google Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DE IV, Bond, JA (2013) Consultant perspectives on weed management needs in midsouthern United States cotton: a follow-up survey. Weed Technol 27:778787 Google Scholar
Riley, EB, Bradley, KW (2014) Influence of application timing and glyphosate tank mix combinations on the survival of glyphosate-resistant giant ragweed (Ambrosia trifida) in soybean. Weed Technol 28:19 Google Scholar
Riley, EB, Raymond, EM, Bradley, KW (2014) Influence of herbicide programs on glyphosate-resistant giant ragweed (Ambrosia trifida L.) density, soybean yield, and net economic return in glyphosate- and glufosinate-resistant soybean. Crop Manag 13. DOI: Google Scholar
Ritter, RL, Menbere, H (2001) Weed management systems utilizing glufosinate-resistant corn (Zea mays) and soybean (Glycine max). Weed Technol 15:8994 Google Scholar
Sarangi, D, Sandell, LD, Knezevic, SZ, Aulakh, JS, Lindquist, JL, Irmak, S, Jhala, AJ (2015) Confirmation and control of glyphosate-resistant common waterhemp (Amaranthus rudis) in Nebraska. Weed Technol 29:8292. doi/pdf/10.1614/WT-D-14-00090.1Google Scholar
Soltani, N, Nurse, R, Sikkema, P (2014) Two-pass weed management with preemergence and postemergence herbicides in glyphosate-resistant soybean. Agric Sci 5:504512. DOI: .Google Scholar
Steckel, GJ, Wax, LM, Simmons, FW, Phillips, WH II (1997) Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol 11:484488 Google Scholar
Stewart, CL, Nurse, RE, Ban Eerd, LL, Vyn, RJ, Sikkema, PH (2011) Weed control, environmental impact, and economics of weed management strategies in glyphosate-resistant soybean. Weed Technol 25:535541 Google Scholar
Taylor-Lovell, S, Wax, LM, Bollero, G (2002) Preemergence flumioxazin and pendimethalin and postemergence herbicide systems for soybean (Glycine max). Weed Technol 16:502511 Google Scholar
Thomas, WE, Everman, WJ, Allen, J, Collins, J, Wilcut, JW (2007) Economic assessment of weed management systems in glufosinate-resistant, glyphosate-resistant, imidazolinone-tolerant, and nontransgenic corn. Weed Technol 21:191198 Google Scholar
VanGessel, MJ (2001) Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705 CrossRefGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403410 Google Scholar
Wiesbrook, ML, Johnson, WG, Hart, SE, Bradley, PR, Wax, LM (2001) Comparison of weed management systems in narrow-row, glyphosate- and glufosinate-resistant soybean (Glycine max). Weed Technol 15:122128 Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar