Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:35:57.744Z Has data issue: false hasContentIssue false

Common Lambsquarters and Hairy Nightshade Control in Potato with Dimethenamid-p Alone and in Tank Mixtures and Comparison of Control by Dimethenamid-p with S-metolachlor and Metolachlor

Published online by Cambridge University Press:  20 January 2017

Pamela J. S. Hutchinson*
Affiliation:
University of Idaho, 1693 S. 2700 W., Aberdeen, ID 83210
*
Corresponding author's E-mail: [email protected]

Abstract

Dimethenamid-p was labeled for preemergence use in potatoes in 2005. The herbicide provides hairy nightshade control; however, a tank-mix partner targeting common lambsquarters must be used in order to provide satisfactory control of that weed. S-metolachlor and metolachlor, also labeled for use in potato, are in the same chemical family as dimethenamid-p and questions have arisen as to whether or not these herbicides provide the same or different levels of hairy nightshade control. The objectives of this study, therefore, were (1) to compare preemergence control of common lambsquarters and other weeds in potato with dimethenamid-p applied at 0.72, 0.94, or 1.12 kg ai ha−1 alone or in two-way tank mixtures to determine appropriate tank-mix partners, and (2) to compare hairy nightshade control by dimethenamid-p with control by S-metolachlor or metolachlor. Two-way tank mixtures of dimethenamid-p with ethalfluralin, EPTC, flumioxazin, metribuzin, pendimethalin, or sulfentrazone generally improved season-long common lambsquarters control compared with dimethenamid-p applied alone at 0.72, 0.94, or 1.12 kg ha−1. When compared with control by dimethenamid-p alone at 0.72 or 0.94 kg ha−1, control by dimethenamid-p at either rate tank-mixed with ethalfluralin or EPTC was not improved as much as control by combinations of dimethenamid-p at those rates with the other tank-mix partners. Hairy nightshade control by three-way tank mixtures of S-metolachlor or metolachlor with various combinations of metribuzin, ethalfluralin, EPTC, or pendimethalin ranged from 60 to 86% and was not as great as the 93 to 98% control by dimethenamid-p at 0.72 kg ha−1 combined with the same tank-mix partners. U.S. No. 1 and total tuber yields of comparative two- and three-way tank mixtures were generally increased when weed control was improved.

En 2005 el dimethenamid-p fue etiquetado para uso pre-emergente en el cultivo de papa. Este herbicida proporciona control de Solanum sarrachoides; sin embargo, otro herbicida en mezcla en tanque debe ser usado con el objeto de proporcionar un control satisfactorio de Chenopodium album. El S-metolachlor y el metolachlor también etiquetados para su uso en papa son de la misma familia química que el dimethenamid-p y han surgido dudas acerca de si estos herbicidas ofrecen los mismos o diferentes niveles de control de S. sarrachoides. Por lo tanto, los objetivos de este estudio fueron: 1) comparar el control pre-emergente de C. album y otras malezas en el cultivo de papa con dimethenamid-p aplicado a 0.72, 0.94, o 1.12 kg ia ha−1 solo o en mezclas de dos vías, para determinar los herbicidas compatibles en mezcla en tanque, y 2) comparar el control de S. sarrachoides con dimethenamid-p con control a base de S-metolachlor o metolachlor. Mezclas de dos vías de dimethenamid-p con ethalfluralin, EPTC, flumioxazin, metribuzin, pendimethalin, o sulfentrazone generalmente mejoraron el control de C. album durante to el ciclo de producción, en comparación con dimethenamid-p aplicado solo a 0.72, 0.94, o 1.12 kg ha−1. Al compararlo con el control obtenido con solo dimethenamid-p a 0.72 o 0.94 kg ha−1, el control obtenido con dimethenamid-p a cualquier dosis de mezcla con ethalfluralin o EPTC, no mejoró tanto el control como las combinaciones de dimethenamid-p a esas mismas dosis con otros herbicidas. El control de S. sarrachoides con mezclas de tres vías de S-metolachlor o metolachlor con varias combinaciones de metribuzin, ethalfluralin, EPTC, o pendimethalin varió de 60 a 86% y no fue tan efectivo como el de 93 a 98% de control obtenido con dimethenamid-p a 0.72 kg ha−1 combinado con los mismos herbicidas. Los rendimientos de US No. 1 y el total de los tubérculos obtenidos con mezclas comparativas de dos y tres vías fueron generalmente mayores cuando el control de malezas mejoró.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2004a. Dual Magnum® herbicide label. Greensboro, NC Syngenta Crop Protection, Inc. 38 p.Google Scholar
Anonymous. 2004b. Outlook® herbicide label. Research Triangle Park, NC BASF. 20 p.Google Scholar
Anonymous. 2004c. Stalwart® herbicide label. Roswell, GA SipCam Agro USA. 13 p.Google Scholar
Alvarez, J. M. and Hutchinson, P.J.S. 2005. Managing nightshade plants to reduce potato viruses and insect vectors. Outlooks on Pest Management 16(6):249252.CrossRefGoogle Scholar
Fronning, B. E., Kegode, G. O., and Ciernia, M. G. 2001. Dimethenamid-p for weed control in potato. Proc. North Cent. Weed Sci. Soc. 56:104.Google Scholar
Guttieri, M. J. and Eberlein, C. V. 1997. Preemergence weed control in potatoes (Solanum tuberosum) with rimsulfuron mixtures. Weed Technol. 11:755761.CrossRefGoogle Scholar
Hutchinson, P.J.S. 2005. Outlook Herbicide for Weed Control in Potatoes. Moscow, ID Univ. of Idaho Ed. Comm. CIS 1126. 4 p.Google Scholar
Hutchinson, P.J.S. 2007. A comparison of flumioxazin and rimsulfuron tank mixtures for weed control in potato. Weed Technol. 21:10231028.CrossRefGoogle Scholar
Hutchinson, P.J.S. 2010. Potatoes. Pages 242261. In Peachy, E., et al. Pacific Northwest 2010 Weed Management Handbook. Corvallis, OR Pacific Northwest Extension Publication.Google Scholar
Hutchinson, P.J.S. and Eberlein, C. V. 2003. Weed management. Pages 241283. In Stark, J. C. and Love, S. L., eds. Potato Production Systems. Moscow, ID University of Idaho Agricultural Communications.Google Scholar
Hutchinson, P.J.S., Eberlein, C. V., Kral, C. W., and Guttieri, M. J. 2005a. Using Matrix in weed management systems for potatoes. Moscow, ID University of Idaho Educational Communications. CIS 1037. 8 p.Google Scholar
Hutchinson, P.J.S., Eberlein, C. V., and Tonks, D. J. 2004. Broadleaf weed control and potato (Solanum tuberosum) crop safety with postemergence rimsulfuron, metribuzin, and adjuvant combinations. Weed Technol. 18:750756.CrossRefGoogle Scholar
Hutchinson, P.J.S., Ransom, C. V., Boydston, R. A., and Beutler, B. R. 2005b. Dimethenamid-p: efficacy and potato (Solanum tuberosum) variety tolerance. Weed Technol. 19:966971.CrossRefGoogle Scholar
Ogg, A. G. Jr. 1986. Variation in response of four nightshades (Solanum spp.) to herbicides. Weed Sci. 34:765772.CrossRefGoogle Scholar
Quakenbush, L. S. and Andersen, R. N. 1985. Susceptibility of five species of the Solanum nigrum complex to herbicides. Weed Sci. 33:386390.CrossRefGoogle Scholar
Richardson, R. J., Whaley, C. M., Wilson, H. P., and Hines, T. E. 2004. Weed control and potato (Solanum tuberosum) tolerance with dimethenamid isomers and other herbicides. Am. J. Potato Res. 81:299304.CrossRefGoogle Scholar
Tonks, D. J., Eberlein, C. V., and Guttieri, M. J. 2000. Preemergence weed control in potato (Solanum tuberosum) with ethalfluralin. Weed Technol. 14:287292.CrossRefGoogle Scholar
Vasilakoglou, I. B. and Eleftherohorinos, I. G. 2003. Persistence, efficacy, and selectivity of amide herbicides in corn. Weed Technol. 17:381388.CrossRefGoogle Scholar
Ward, K. I. and Weaver, S. E. 1996. Response of eastern black nightshade (Solanum ptycanthum) to low rates of imazethapyr and metolachlor. Weed Sci. 44:897902.Google Scholar