Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T09:00:33.719Z Has data issue: false hasContentIssue false

An Environmental and Economic Perspective on Integrated Weed Management in Iran

Published online by Cambridge University Press:  20 January 2017

Mohammad Ghorbani
Affiliation:
Department of Agricultural Economics, P.O. Box 91775-1163, Agriculture College, FerdowsiUniversity of Mashhad, Mashhad, Iran
Surendra Kulshreshtha*
Affiliation:
Department of Bioresource Policy Business and Economics, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
*
Corresponding author's E-mail: [email protected]

Abstract

Inputs, including herbicides, used in crop production may create negative environmental impacts. One solution to minimize these adverse effects is the adoption of integrated weed management (IWM) with the intention of reducing herbicide use. This study, conducted in 2010, estimates the willingness of farmers to pay for the adoption of more effective weed management methods. Results suggest that the willingness to pay (WTP) for IWM is greater than the WTP for other weed management methods, including chemical weed management and chemical and mechanical weed management. This study also identified a number of factors that influence the adoption of IWM on wheat farms in Iran using a multinomial logit model. Total annual income, area under irrigated wheat, wheat yield loss due to weeds, perennial nature of the weeds, and having awareness of weed resistance to herbicides had a positive effect on the adoption of IWM practices. However, having rain-fed (dryland) wheat cultivation and a larger number of plots on the farm had a negative influence on the choice of IWM.

Insumos usados en producción de cultivos, incluyendo herbicidas, pueden generar impactos ambientales negativos. Una solución para minimizar estos efectos adversos es la adopción del manejo integrado de malezas (IWM) con la intención de reducir el uso de herbicidas. Este estudio, realizado en 2010, estima la disponibilidad de productores de pagar (WTP) por la adopción de métodos de manejo de malezas más efectivos. Los resultados sugieren que la WTP por IWM es mayor que la WTP por otros métodos de manejo de malezas, incluyendo el manejo químico de malezas y la combinación de manejo químico y mecánico. Este estudio también identificó un número de factores que influencian la adopción de IWM en fincas de trigo en Irán usando un modelo logit multinomial. El ingreso total, el área de trigo bajo riego, la pérdida de rendimiento del trigo debido a malezas, la naturaleza perenne de las malezas, y el conocer sobre la resistencia de las malezas a los herbicidas tuvo un efecto positivo sobre la adopción de prácticas de IWM. Sin embargo, el tener trigo dependiente de lluvia (sin riego) y un número grande de parcelas en la finca tuvo una influencia negativa sobre la escogencia de IWM.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahmadi, G. H. 1998. Critical Period of Weed Management in Rainfed Peas. M. . Mashhad, Iran Ferdowsi University of Mashhad. 97 p. [In Persian with English summary]Google Scholar
Beach, E. and Carlson, G. 1993. Hedonic analysis of herbicides: do user safety and water quality matter? Amer. J. Agric. Econ. 75:612623.Google Scholar
Ben-Akiva, M. and Lerman, S. 1985. Discussion Choice Analysis: Theory and Application to Travel Demand. Cambridge, MA MIT Press. 416 p.Google Scholar
Blackshaw, R. E., Molnar, L. J., Muendel Aindon, H. H., and Gjuligs, X. 2000. Integration of cropping practices and herbicides to improve weed management in dry beans (Phaseolus vulgaris). Weed Technol. 14:327336.CrossRefGoogle Scholar
Blair, A. and White, D. 1985. Leukemia cell types and agricultural practices in Nebraska. Arch. Environ. Health. 40:211214.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming. Weed Res. 41:383405.Google Scholar
Central Bank of Iran. 2006. Household Budget Survey in Urban Areas in Iran. CoinMill.com – the Currency Converter. 2010. Iranian Rials (IRR) and United States Dollar (USD) Currency Exchange Converter Calculator. On-Line. Accessed on June 10, 2012 at: http://coinmill.com/IRR_USD.html.Google Scholar
Economic Statistics Department. http://www.cbi.ir/simplelist/1421.aspx. Accessed: March 30, 2012.Google Scholar
Chikoye, D., Schulz, S., and Ekeleme, F. 2004. Evaluation of integrated weed management practices for maize in the northern Guinea Savanna of Nigeria. Crop Prot. 23:895900.Google Scholar
Cochran, W. G. 1963. Sampling Techniques. New York J. Wiley. 413 p.Google Scholar
[FAO] Food and Agriculture Organization. 2009. FAOStat. http://faostat.fao.org/site/452/default.aspx. Accessed: March 29, 2012.Google Scholar
Florax, R., Travisi, C., and Nijkamp, P. 2005. A meta-analysis of the willingness to pay for reduction in pesticide exposure. Eur. Rev. Agric. Econ. 32:441467.Google Scholar
Funari, E., Donati, L., Sandroni, D., and Vighi, M. 1995. Pesticide levels in groundwater: value and limitation of monitoring. Pages 344 in Vighi, M. and Funari, E., eds. Pesticide Risk in Groundwater. Chelsea, MI Lewis.Google Scholar
Ghorbani, M., Ghorbani, R., Kohansal, M. R., and Nemati, A. 2010. Determinants of weed management methods in wheat farms of Khorasan Razavi province. (Iranian) J. Agric. Econ. 3:149167.Google Scholar
Ghorbani, M. and Firozzare, A. 2008. Introduction to Valuation of Environment. Mashhad, Iran Ferdowsi University of Mashhad. Press, Iran. 214 p. [In Persian with English summary]Google Scholar
Greene, W. H. 2003. Econometric Analysis. 3rd ed. New York Macmillan. 791 p.Google Scholar
Hatcher, P. E. and Melander, B. 2003. Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res. 43:303322.Google Scholar
Hausman, J. and McFadden, D. 1984. Specification tests for the multinomial logit model. Econometrica. 52:12191240.Google Scholar
Higley, L. and Wintersteen, W. 1992. A novel approach to environmental risk assessment of pesticides as a basis for incorporating environmental costs into economic injury level. Am. Entomol. 38:3439.Google Scholar
Hoar, S. K., Blair, A., Holmes, F. F., Boysen, C. D., Robel, R. J., Hoover, R., and Fraumeni, J. F. Jr. 1986. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. J. Am. Med. Assoc. 256:11411147.Google Scholar
Hobbs, P. R. and Bellinder, R. R. 2004. Weed management in less developed countries. Pages 12951298 in Goodman, R. M. (ed.). Encyclopedia of Plant and Crop Science. New York: Cleveland, Ohio CRC Press.Google Scholar
Jayakumar, R. 1995. Herbicide residue in soil–plant–water system. Pages 389409 in Palanippan, S. P., ed. Agricultural Input and Environment. Chennai, India Scientific.Google Scholar
Kafle, A. 2007. Pesticide Use and Health Costs: A Brief Bibliographical Survey. http://www.sandee.online.org/publications/bibliographies/pdf/pesticide_final.pdf. Accessed: March 30, 2012.Google Scholar
Luhdholm, E. 1987. Thinning of eggshells in birds by DDT: mode of action on the eggshell gland. Comp. Biochem. Physiol. 88:122.Google Scholar
Mason, C. F., Ford, T. C., and Last, N. I. 1986. Organochlorine residues in British otters. Bull. Environ. Contam. Toxicol. 36:2936.Google Scholar
Mullen, J., Norton, G., and Reaves, D. 1997. Economic analysis of environmental benefits from integrated pest management. J. Agric. Appl. Econ. 29:243253.Google Scholar
Murray, A. 1985. Acute and residual toxicity of a new pyrethroid insecticide, WL 85871, to honey bees. Bull. Environ. Contam. Toxicol. 34:560564.Google Scholar
Nelson, L. S. and Shearer, J. F. 2009. Integrated Weed Management Strategies for Management of Hydrilla. http://el.erdc.usace.army.mil/elpubs/pdf/apccc-09.pdf. Accessed: March 30, 2012.Google Scholar
Nemati, A. 2009. Evaluating the Management of Weeds in Wheat Farms (Case Atudy of Khorasan Razavi Province. . Mashhad, Iran Ferdowsi University of Mashhad. 100 p. [In Persian with English summary]Google Scholar
Nie, N., Bent, D. and Hull, C. 1070. SPSS – Statistical Package for the Social Sciences. New York MacGraw Hill. 486 pp.Google Scholar
Owens, N. N., Swinton, S. M., and Van Ravenswaay, E. O. 1998. Farmer Demand for Safer Corn Herbicides: Survey Methods and Descriptive Results. East Lansing, MI Michigan Agricultural Experiment Station, Michigan State University Research Report 547. 128 p.Google Scholar
Pai, C. W. and Saleh, W. 2008. Modeling motorcyclist injury severity by various crash types at T-junctions in the UK. Saf. Sci. 46:12341247.Google Scholar
Ribaudo, M. 1993. Atrazine and Water Quality: Issues, Regulations and Economics. Agricultural Resources Situation and Outlook, AR-30. Washington, DC: Economic Research Service, U.S. Department of Agriculture. 42 p. Shaner, D. L. 1995. Herbicide resistance: where are we? How did we get here? Where are we going? Weed Technol. 9:850–856.Google Scholar
Sivayoganathan, C., Gnanachandran, S., Lewes, J., and Fernando, M. 2000. Protective measure use and symptoms among agropesticide applicators in Sri Lanka. Soc. Sci. Med. 40:431436.Google Scholar
Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: the role of integrated weed management (IWM) in agro-ecosystem health. Weed Sci. 44:437445.CrossRefGoogle Scholar
Sydorovych, O. and Marra, M. 2008. Valuing the Changes in Herbicide Risks Resulting from Adoption of Roundup Ready Soybeans by U.S. Farmers An Empirical Analysis of Revealed Value Estimates. Paper presented at the Southern Agricultural Economics Association Annual Meetings. Dallas, Texas, http://ageconsearch.umn.edu/bitstream/8215/1/sp08sy01.pdf. Accessed: March 30, 2012.Google Scholar
Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1991. Sulfonylurea herbicide resistant weeds: discovery, distribution, biology, mechanism and management. Pages 125128 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, UK Butterworth-Heinemann.Google Scholar
Ullah, W., Khan, M. A., Sadiq, M., Rehman, H. U., Nawaz, A., and Altaf Sher, M. 2008. Impact of integrated weed management on weeds and yield of maize. Pak. J. Weed Sci. Res. 14:141151.Google Scholar
Van Ravenswaay, E. O. and Hoehn, J. P. 1991. Contingent Valuation and Food Safety: The Case of Pesticide Residues. East Lansing, MI Department of Agricultural Economics, Michigan State University Staff Paper No. 91–13. 85 p.Google Scholar
Venkatachalam, L. 2003. The contingent valuation method: a review. Environ. Impact Assess. Rev. 24:89124.Google Scholar
Walsh, R. G., Loomis, J. B., and Gillman, R. A. 1984. Valuing option, existence and bequest demands for wilderness. Land Econ. 60:1429.CrossRefGoogle Scholar
Wigle, D. T., Semenciw, R. M., Wilkins, K., Riedel, D., Ritter, L., Morrison, H. I., and Mao, Y. 1990. Mortality study of Canadian male farm operators: non-Hodgkin's lymphoma mortality and agricultural practices in Saskatchewan. J. Natl. Cancer Inst. 82:575582.Google Scholar
Zimdahl, R. L. 1999. Fundamentals of Weed Science. 2nd ed. New York Academic. 556 p.Google Scholar