Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T07:25:17.604Z Has data issue: false hasContentIssue false

Allyl Isothiocyanate: A Methyl Bromide Replacement in Polyethylene-Mulched Bell Pepper

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
Jingying Zhang
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
Tsehaye Habtom
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: [email protected]

Abstract

Methyl bromide has been a key fumigant for broad-spectrum weed control in polyethylene-mulched bell pepper. However, the ozone-depleting nature of methyl bromide has led to its scheduled phaseout from U.S. agriculture. Thus, an effective alternative to methyl bromide is needed. Field trials were conducted in 2007 and 2009 to evaluate the crop response and weed control efficacy of allyl isothiocyanate (ITC) in polyethylene-mulched bell pepper. The experiment included various combinations of two mulch types (low density polyethylene [LDPE] and virtually impermeable film [VIF] mulch) and six rates of allyl isothiocyanate (0, 15, 75, 150, 750, 1,500 kg ha−1). Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was included for comparison. Bell pepper injury was < 3% in all treatments, except 11% injury at 1,500 kg ha−1 allyl isothiocyanate under VIF mulch at 2 wk after transplanting (WATP). VIF mulch did not provide additional weed control and marketable pepper yield over LDPE mulch. Allyl isothiocyanate at 932 (± 127) kg ha−1 controlled yellow nutsedge (90%), Palmer amaranth (97%), and large crabgrass (92%) through 6 WATP and maintained the marketable yield equivalent to methyl bromide treatment. This research demonstrates that allyl ITC under an LDPE mulch can serve as a potential alternative to methyl bromide for weed control in polyethylene-mulched bell pepper.

El bromuro de metilo ha sido un fumigante clave para el control de maleza de amplio espectro en el cultivo de chile dulce (Capsicum annuum “Heritage”) con cubierta de polietileno. Sin embargo, la característica que tiene el bromuro de metilo de destruir el ozono de la atmósfera ha causado su retiro programado de la agricultura de los Estados Unidos. Por lo tanto, se necesita una alternativa efectiva para el uso de este fumigante. Se llevaron al cabo estudios de campo en 2007 y 2009 para evaluar la respuesta del cultivo y la eficacia del control de maleza de alil isotiocianato (ITC) con cubierta de polietileno en chile dulce. El experimento incluyó varias combinaciones de dos tipos de cubierta [polietileno de baja densidad (LDPE) y película virtualmente impermeable (VIF)] y seis dosis de alil isotiocianato (0, 15, 75, 150, 750, 1500 kg ha−1). Adicionalmente, se incluyó un tratamiento estándar de bromuro de metilo/cloropicrina (67:33%) a 390 kg ha−1 bajo una cubierta LDPE como comparación. El daño a chile dulce fue <3% en todos los tratamientos, exceptuando 11% de daño a 1500 kg ha−1 de alil isotiocianato bajo cubierta VIF, a 2 semanas después del transplante (WATP). La cubierta VIF no proporcionó mayor control de la maleza ni tampoco rendimiento comercial superior en el cultivo, al compararlo con LDPE. El alil isotiocianato a una dosis de 932 (±127) kg ha−1 en chile dulce controló Cyperus esculentus (90%), Amaranthus palmeri (97%), y Digitaria sanguinalis (92%) a lo largo de las 6 semanas después del transplante (WATP) y mantuvo el rendimiento comercial equivalente al tratamiento con bromuro de metilo. Esta investigación demuestra que alil ITC bajo una cubierta de LDPE puede servir como una alternativa potencial al bromuro de metilo para el control de maleza en el cultivo de chile dulce con cubierta de polietileno.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, , 2005. Global Methyl Bromide Pre-plant Soil Fumigation by Crop. http://www.epa.gov/ozone/mbr/background/globpreplantcrop.pdf. Accessed: February 10, 2008.Google Scholar
Austerweil, M., Steiner, B., and Gamliel, A. 2006. Permeation of soil fumigants through agricultural plastic films. Phytoparasitica 34:491501.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43:30703074.Google Scholar
Candole, B. L., Csinos, A. S., and Wang, D. 2007. Concentrations in soil and efficacy of drip-applied 1,3-D + chloropicrin and metam sodium in plastic-mulched sandy soil beds. Crop. Prot 26:18011809.Google Scholar
Desaegar, J. A. and Csinos, A. E. 2006. Root-knot nematode management in double-cropped vegetable production. J. Nematol 38:5967.Google Scholar
Drobinca, L., Kristian, P., and Augustin, J. 1977. The chemistry of the NCS group. Pages 10031197. In Patai, S. ed. The Chemistry of Cyanates and their Derivatives. Part 2. New York J. Wiley.Google Scholar
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr 18:123201.Google Scholar
Frank, J. R., Schwartz, P. H. Jr., and Potts, W. E. 1992. Modeling the effect of weed interference periods and insects on bell peppers (Capsicum annuum). Weed Sci. 40:308312.Google Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
Gerik, J. S. 2005. Evaluation of soil fumigants applied by drip irrigation for liatris production. Plant Dis 89:883887.Google Scholar
Gilreath, J. P., Jones, J. P., Motis, T. N., and Santos, B. M. 2003. Evaluation of various chemical treatments for potential as methyl bromide replacements for disinfestations of soilborne pests in polyethylene-mulched tomato. Proc. Fla. State. Hortic. Soc 116:151158.Google Scholar
Gilreath, J. P., Santos, B. M., and Motis, T. N. 2008. Performance of methyl bromide alternatives in strawberry. HortTechnol 18:8083.Google Scholar
Hadiri, N. El, Ammati, M., Chgoura, M., and Mounir, K. 2003. Behavior of methyl isothiocyanate in soils under field conditions in Morocco. Chemosphere 52:927932.Google Scholar
Holmes, G. J. and Kemble, J. M. eds. 2010. Vegetable Crop Handbook for the Southeastern United States. 11th ed. Lincolnshire, IL Vance Publ. 276 p.Google Scholar
Johnson, W. C. and Mullinix, B. G. 2007. Yellow nutsedge (Cyperus esculentus) control with metam-sodium transplanted cantaloupe (Cucumis melo). Crop Prot 26:867871.Google Scholar
Jordan, N., Mortensen, D. A., Prenzlow, D. M., and Cox, K. C. 1995. Simulation analysis of crop rotation effects on weed seedbanks. Am. J. Bot 82:390398.Google Scholar
Motis, T. N., Gilreath, J. P., and Noling, J. W. 2003. Nutsedge control and bell pepper production with reduced rates of methyl bromide applied under virtually impermeable film. Proc. South Weed Sci. Soc 56:110.Google Scholar
Motis, T. N., Locascio, S. J., and Gilreath, J. P. 2004. Critical yellow nutsedge-free period for polyethylene-mulched bell pepper. HortScience 39:10451049.Google Scholar
Noling, J. W. 2005. Reducing Methyl Bromide Field Application Rates with Plastic Mulch Technology. http://edis.ifas.ufl.edu/pdffiles/IN/IN40300.pdf. Accessed: January 11, 2010.Google Scholar
Noling, J. W., Botts, D. A., and McRae, A. W. 2010. Alternatives of Methyl Bromide Soil Fumigation for Florida Vegetable Production. http://www.hos.ufl.edu/vegetarian/09/Apr/VPH%202009-2010/Chap%206.pdf. Accessed: December 15, 2009.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53:515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipmomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53:884890.Google Scholar
Norsworthy, J. K., Oliveira, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22:296302.Google Scholar
Patterson, D. T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 12:275280.Google Scholar
Peterson, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93:3743.Google Scholar
Price, A. J., Charron, C. S., Saxton, A. M., and Sams, C. E. 2005. Allyl isothiocyanate and carbon dioxide produced during degradation of Brassica juncea tissue in different soil conditions. HortScience 40:17341739.Google Scholar
Rodriguez–Kabana, R. 2002. Furfural-based biofumigant mixtures for control of phytopathogenic nematodes and weeds. Pages. 5255. in. Proceedings of the International Conference on Alternatives to Methyl Bromide, Sevilla, Spain. Brussels, Belgium European Commission.Google Scholar
Schabenberger, O. and Pierce, F. J. 2002. Contemporary statistical models for the plant and soil sciences. Boca Raton, FL CRC. 738 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Simonne, E. H. and Hochmuth, G. J. 2010. Soil and Fertilizer Management for Vegetable Production in Florida. http://www.mans.edu.eg/projects/heepf/ilppp/cources/12/pdf%20course/38/CV10100.pdf. Accessed: March 25, 2010.Google Scholar
Stuart, A. and Ord, J. K. 1994. Kendall's Advanced Theory of Statistics. London, UK Edward Arnold. 704 p.Google Scholar
[USDA] United States Department of Agriculture 2005. United States Standards for Grades of Sweet Peppers. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050318. Accessed: October 5, 2009.Google Scholar
[USDA] United States Department of Agriculture, National Agricultural Statistics Service 2009. Vegetable 2008 Summary: Tables. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-28-2009.pdf Accessed: October 5, 2009.Google Scholar
[USEPA] United States Environmental Protection Agency 2008. Ozone Layer Depletion—Regulatory Programs: The Phaseout of Methyl Bromide Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc 59:260277.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing the fumigant emission after soil application. Phytopathol 92:13441348.Google Scholar