Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T23:56:05.528Z Has data issue: false hasContentIssue false

ACCase-Inhibiting Herbicide-Resistant Avena spp. Populations from the Western Australian Grain Belt

Published online by Cambridge University Press:  20 January 2017

M. S. Ahmad-Hamdani
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, WA 6009, Australia, and Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Mechelle J. Owen
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
Qin Yu
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
Stephen B. Powles*
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
*
Corresponding author's E-mail: [email protected]

Abstract

Avena spp. are world weeds with many cases of evolved herbicide resistance. In Australia, Avena spp. (wild oat and sterile oat) are a major problem, especially in grain crops. Acetyl-CoA carboxylase (ACCase)–inhibiting herbicides have been used extensively since the late 1970s for Avena spp. control. However, continued reliance on these herbicides has resulted in the evolution of resistant Avena spp. populations. Resistance across many ACCase-inhibiting herbicides was characterized in four Avena spp. populations from the Western Australian grain belt. Dose–response experiments were conducted to determine the level of resistance to the aryloxyphenoxypropionates and cyclohexanediones and to the phenylpyrazoline herbicide pinoxaden. On the basis of resistance index values, all four resistant populations exhibited high-level diclofop resistance but varied in the level of resistance to other ACCase-inhibiting herbicides tested. It is evident that Avena spp. populations from the Western Australian grain belt have evolved resistance to a number of ACCase-inhibiting herbicides.

Avena spp. son malezas mundiales con muchos casos de evolución de resistencia a herbicidas. En Australia, Avena spp., (A. fatua y A. sterilis), representan un gran problema, especialmente en cultivos de grano. Herbicidas inhibidores de la acetil-CoA carboxylase (ACCase) se han usado extensivamente desde finales de los años 1970's para el control de Avena spp. Sin embargo, la continua dependencia en estos herbicidas ha resultado en la evolución de poblaciones de Avena spp. resistentes. La resistencia a varios herbicidas inhibidores ACCase fue caracterizada en cuatro poblaciones de estas malezas en el cinturón de granos del occidente de Australia. Se realizaron experimentos de respuesta a dosis para determinar el nivel de resistencia a los aryloxyphenoxypropionates (APPs), a los cyclohexanediones (CHDs), y al pinoxaden, un herbicida phenylpyrazoline (PPZ). Basado en el índice de valores de resistencia, todas las cuatro poblaciones resistentes exhibieron altos niveles de resistencia al diclofop, pero variaron en el nivel de resistencia a otros herbicidas inhibidores ACCase. Es evidente que las poblaciones de Avena spp. del cinturón de granos del occidente australiano han desarrollado resistencia a un número de herbicidas inhibidores ACCase.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J., Thomas, A. G., Legere, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13:612625.Google Scholar
Boutsalis, P. 2007. Herbicide resistance in wild oats—the potential for more than one mode of action. In Widderick, M., ed. Northern Herbicide Resistance Updates. Brisbane, Australia The State of Queensland (Department of Primary Industries and Fisheries).Google Scholar
Cruz-Hipolito, H., Osuna, M. D., Domínguez-Valenzuela, J. A., Espinoza, N., and De Prado, R. 2011. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J. Agric. Food Chem. 59:72617267.Google Scholar
Délye, C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci. 53:728746.Google Scholar
Devine, M. D. 1997. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review. Pestic. Sci. 51:259264.3.0.CO;2-S>CrossRefGoogle Scholar
Devine, M. D. and Shimabukuro, R. H. 1994. Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. Pages 141169. In Powles, S. B. and Holtum, J. A. M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis Publishers, CRC Press.Google Scholar
Heap, I. 2011. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: June 18, 2011.Google Scholar
Heap, I. and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci. 48:156157.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41:232238.Google Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic. Biochem. Physiol. 51:129136.Google Scholar
Liu, W., Harrison, D. K., Chalupska, D., Gornicki, P., O'Donnell, C. C., Adkins, S. W., Haselkorn, R., and Williams, R. R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. U.S.A. 104:36273632.CrossRefGoogle ScholarPubMed
Maneechote, C., Holtum, J. A., Preston, C., and Powles, S. B. 1994. Resistant acetyl-CoA carboxylase is a mechanism of herbicide resistance in a biotype of Avena sterilis ssp. ludoviciana . Plant Cell Physiol. 35:627635.Google Scholar
Maneechote, C., Preston, C., and Powles, S. B. 1997. A diclofop-methyl–resistant Avena sterilis biotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhanced metabolism of diclofop-methyl. Pestic. Sci. 49:105114.Google Scholar
Mansooji, A. M., Holtum, J. A., Boutsalis, P., Matthews, J. M., and Powles, S. B. 1992. Resistance to aryloxyphenoxypropionate herbicides in 2 wild oat species (Avena fatua and Avena sterilis ssp. ludoviciana). Weed Sci. 40:599605.Google Scholar
Miller, S. D. and Nalewaja, J. D. 1974. HOE-23408 for postemergence wild oat and foxtail control. Proc. North Central Weed Control Conf. 29:3839.Google Scholar
Moss, S. R. and Cussans, G. W. 1985. Variability in the susceptibility of Alopecurus myosuroides (black-grass) to chlortoluron and isoproturon. Asp. Appl. Biol. 9:9198.Google Scholar
Owen, M. J. and Powles, S. B. 2009. Distribution and frequency of herbicide-resistant wild oat (Avena spp.) across the Western Australian grain belt. Crop Pasture Sci. 60:2531.Google Scholar
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61:317347.Google Scholar
Seefeldt, S. S., Gealy, D. R., Brewster, B. D., and Fuerst, E. P. 1994. Cross-resistance of several diclofop-resistant wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci. 42:430437.CrossRefGoogle Scholar
Shukla, A., Dupont, S., and Devine, M. D. 1997. Resistance to ACCase-inhibitor herbicides in wild oat: evidence for target site-based resistance in two biotypes from Canada. Pestic. Biochem. Physiol. 57:147155.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 45:527535.Google Scholar
Uludag, A., Nemli, Y., Tal, A., and Rubin, B. 2007. Fenoxaprop resistance in sterile wild oat (Avena sterilis) in wheat fields in Turkey. Crop Prot. 26:930935.Google Scholar
Widderick, M. and Cook, T. 2011. Strategies for Optimising the Life of Group A Herbicides and Patterns of Herbicide Resistance in Wild Oats. City East, Australia State of Queensland (Department of Employment, Economic Development and Innovation). http://www.grdc.com.au. Accessed: September 15, 2011.Google Scholar
Yu, Q., Collavo, A., Zheng, M. Q., Owen, M., Sattin, M., and Powles, S. B. 2007. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol. 145:547558.Google Scholar