Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T08:31:34.893Z Has data issue: false hasContentIssue false

Yellow Nutsedge (Cyperus esculentus) Growth and Tuber Production in Response to Increasing Glyphosate Rates and Selected Adjuvants

Published online by Cambridge University Press:  20 January 2017

Joel Felix*
Affiliation:
Malheur Experiment Station, Oregon State University, 595 Onion Avenue, Ontario, OR, 97914
Joseph T. Dauer
Affiliation:
Crop and Soil Science, Oregon State University, Corvallis, OR, 97331
Andrew G. Hulting
Affiliation:
Crop and Soil Science, Oregon State University, Corvallis, OR, 97331
Carol Mallory-Smith
Affiliation:
Crop and Soil Science, Oregon State University, Corvallis, OR, 97331
*
Corresponding author's E-mail: [email protected]

Abstract

Greenhouse studies were conducted to evaluate the influence of selected adjuvants on glyphosate efficacy on yellow nutsedge and tuber production. Glyphosate was applied at 0, 0.25, 0.43, 0.87, 1.26 (1× rate), and 1.74 kg ae ha−1 at 31 d after yellow nutsedge was planted. Each rate was mixed with one of the following adjuvants: ammonium sulfate (AMS), AMS plus nonionic surfactant (NIS), or AMS plus an experimental adjuvant (W-7995) plus NIS. Plants were evaluated for injury and for the number and size of tubers produced. Dose–response curves based on log-logistic models were used to determine the effective glyphosate rate plus adjuvant that provided both 90% effective dose (ED90) for yellow nutsedge injury and reduced tuber production. Addition of NIS to glyphosate plus AMS resulted in the greatest yellow nutsedge injury at 28 d after treatment (DAT). Addition of the experimental adjuvant plus NIS resulted in injury similar to NIS alone. The ED90 for injury at 28 DAT was 2.12 kg ha−1 with glyphosate plus AMS and NIS compared with 2.18 kg ha−1 for W-7995 plus NIS and 3.06 kg ha−1 with AMS alone. The ED90 rates with different adjuvants represent 168%, 173%, and 243% of the highest glyphosate rate (1.26 kg ha−1) labeled for application on many glyphosate-resistant crops. However, the estimated ED90 to reduce small, medium, large, and total tubers were 1.60, 1.50, 1.63, and 1.66 kg ha−1, respectively. Increases in labeled rates of glyphosate may be required to reduce yellow nutsedge tuber production in field conditions. Use of lower glyphosate rates should be discouraged because it may increase tuber production and exacerbate yellow nutsedge expansion in infested fields.

Se realizaron estudios de invernadero para evaluar la influencia de adyuvantes seleccionados en la eficacia de glifosato en el control de Cyperus esculentus y la producción de tubérculos. El glifosato se aplicó a 0, 0.25, 0.43, 0.87, 1.26 (1× dosis) y 1.74 kg ea ha−1 a los 31 días después de sembrar el C. esculentus. Cada dosis se mezcló con uno de los siguientes adyuvantes: sulfato de amonio (AMS); o AMS más un surfactante no iónico (NIS); o AMS más un adyuvante experimental (W-7995) más NIS. Las plantas se evaluaron por el daño causado en ellas y el número y tamaño de los tubérculos producidos. Se usaron curvas de dosis-respuesta basadas en modelos log-logísticos para determinar la dosis efectiva de glifosato más el adyuvante, que proporcionara 90% de daño a C. esculentus (ED90) y una producción menor de tubérculos. La adición de NIS al glifosato más AMS originó el mayor daño a C. esculentus a los 28 días después de la aplicación (DDA). La adición del adyuvante experimental más NIS resultó en un daño similar a la aplicación de NIS por sí solo. El daño ED90 a los 28 DDA fue 2.12 kg ha−1 con glifosato más AMS y NIS, comparado a 2.18 kg ha−1 para W-7995 más NIS y 3.06 kg ha−1 con AMS solo. Las dosis ED90 con diferentes adyuvantes representan 168, 173 y 243% de la dosis más alta de glifosato (1.26 kg ha−1) recomendada para su aplicación en muchos cultivos resistentes a glifosato. Sin embargo, la dosis estimada ED90 para reducir pequeños, medianos, grandes y el total de tubérculos fue 1.60, 1.50, 1.63 y 1.66 kg ha−1, respectivamente. Incrementos en las dosis recomendadas de glifosato podrían ser necesarios para reducir la producción de tubérculos de C. esculentus en condiciones de campo. No debería recomendarse el uso de dosis más bajas de glifosato porque esto podría incrementar la producción de tubérculos y exacerbar la expansión de C. esculentus en campos infestados.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H. 1994. Herbicide Handbook, 7th ed. Champaign, IL Weed Science Society of America. Pp. 310318.Google Scholar
Anderson, W. P. 1999. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus). Pages 5766 in Perennial Weeds. Ames, IA Iowa State University Press.Google Scholar
Anonymous, . 2008. Outlook® herbicide label. BASF Publication No. NVA 2008-04-086-0227. Research Park Triangle, NC BASF Corporation.Google Scholar
Anonymous, . 2010a. Dual Magnum® herbicide label. Syngenta Publication No. SCP816AL1U1210. Greensboro, NC Syngenta Crop Protection, Inc.Google Scholar
Anonymous, . 2010b. Roundup PowerMax® herbicide label. Monsanto Publication No. 6302714-10. St. Louis, MO Monsanto Company.Google Scholar
Appleby, A. P. and Paller, E. C. 1978. Effect of naptalam on growth of yellow nutsedge and subsequent control with glyphosate. Weed Res. 18:247253.CrossRefGoogle Scholar
Bhowmik, P. C. 1997. Weed biology: importance to weed management. Weed Sci. 45:349356.Google Scholar
Dayan, F. E., Green, H. M., Weete, J. D., and Hancock, H. G. 1996. Postemergence activity of sulfentrazone: effects of surfactants and leaf surfaces. Weed Sci. 44:797803.CrossRefGoogle Scholar
DeFelice, M. S. 2002. Yellow nutsedge (Cyperus esculentus L.): snack food of the gods. Weed Technol. 16:901907.CrossRefGoogle Scholar
Ethridge, R. E. and Mueller, T. C. 1998. Roundup Ultra effects on perennial weeds. Proc. South. Weed Sci. Soc. 51:10.Google Scholar
Hauser, E. W. 1971. Nutsedge: a worldwide plague. Weeds Today 2:2123.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. The World's Worst Weeds: Distribution and Biology. Malabar, FL Krieger Publishing. Pp. 125133.Google Scholar
Holt, J. S. 1994. Genetic variation in life history traits in yellow nutsedge (Cyperus esculentus) from California. Weed Sci. 42:378384.Google Scholar
Hopkins, W. G. 1995. Introduction to Plant Physiology. New York J. Wiley. 464 p.Google Scholar
Keeling, J. W., Bender, D. A., and Abernathy, J. R. 1990. Yellow nutsedge (Cyperus esculentus) management in transplanted onions (Allium cepa). Weed Technol. 4:6870.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1985. Influence of glyphosate on resprouting of parent tubers of Cyperus esculentus . Weed Sci. 34:2529.CrossRefGoogle Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Nalewaja, J. D. and Matysiak, R. 1993. Influence of diammonium sulfate and other salts on glyphosate phytotoxicity. Pestic. Sci. 38:7784.CrossRefGoogle Scholar
Nelson, A. K., Renner, K. A., and Penner, D. 2002. Yellow nutsedge (Cyperus esculentus) control and tuber yield with glyphosate and glufosinate. Weed Technol. 16:360365.Google Scholar
Pereira, W. and Crabtree, G. 1986. Absorption, translocation, and toxicity of glyphosate and oxyfluorfen in yellow nutsedge (Cyperus esculentus). Weed Sci. 34:923929.CrossRefGoogle Scholar
Pratt, D., Kells, J. J., and Penner, D. 2003. Substitutes for ammonium sulfate as additives with glyphosate and glufosinate. Weed Technol. 17:576581.Google Scholar
Ransom, C. V., Rice, C. A., and Ishida, J. K. 2003. Yellow nutsedge competition in dry bulb onion production. OSU Malheur Experiment Station Special Rep. 1055:97–99. Corvallis, OR Oregon State University Malheur Experiment Station.Google Scholar
SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC SAS Institute Inc.Google Scholar
Schippers, P., Borg, S.J.T., and Bos, J. J. 1995. A revision of the infraspecific taxonomy of Cyperus esculentus (yellow nutsedge) with an experimentally evaluated character set. Syst. Bot. 20:461481.CrossRefGoogle Scholar
Schippers, P., Borg, S.J.T., Van Groenendael, J. M., and Habekotte, B. 1993. What makes Cyperus esculentus (yellow nutsedge) an invasive species? a spatial model approach. Pages 495504 in Proceedings Brighton Crop Protection Conference—Weeds. Hampshire, UK British Crop Production Council.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23:215221.Google Scholar
Thelen, K. D., Jackson, E. P., and Penner, D. 1995. The basis for the hard water antagonism of glyphosate activity. Weed Sci. 43:541548.Google Scholar
Webster, T. M. 2005. Mulch type affects growth and tuber production of yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus). Weed Sci. 53:834838.Google Scholar
Webster, T. M., Grey, T. L., Davis, J. W., and Culpepper, A. S. 2008. Glyphosate hinders purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) tuber production. Weed Sci. 56:735742.Google Scholar