Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:39:55.390Z Has data issue: false hasContentIssue false

Weed Populations, Sweet Corn Yield, and Economics Following Fall Cover Crops

Published online by Cambridge University Press:  20 January 2017

Kelsey A. O'Reilly
Affiliation:
School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Darren E. Robinson
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Richard J. Vyn
Affiliation:
Department of Food, Agricultural & Resource Economics, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Laura L. Van Eerd*
Affiliation:
School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

The effectiveness of cover crops as an alternative weed control strategy should be assessed as the demand for food and fiber grown under sustainable agricultural practices increases. This study assessed the effect of fall cover crops on weed populations in the fall and spring prior to sweet corn planting and during sweet corn growth. The experiment was a split-plot design in a pea cover–cover crop–sweet corn rotation with fall cover crop type as the main plot factor and presence or absence of weeds in the sweet corn as the split-plot factor. The cover crop treatments were a control with no cover crop (no-cover), oat, cereal rye (rye), oilseed radish (OSR), and oilseed radish with rye (OSR+rye). In the fall, at Ridgetown, weed biomass in the OSR treatments was 29 and 59 g m−2 lower than in the no-cover and the cereal treatments, respectively. In the spring, OSR+rye and rye reduced weed biomass, density, and richness below the levels observed in the control at Bothwell. At Ridgetown in the spring, cover crops had no effect on weed populations. During the sweet corn season, weed populations and sweet corn yields were generally unaffected by the cover crops, provided OSR did not set viable seed. All cover crop treatments were as profitable as or more profitable than the no-cover treatment. At Bothwell profit margins were highest for oat at almost Can$600 ha−1 higher than the no-cover treatment. At Ridgetown, compared with the no-cover treatment, OSR and OSR+rye profit margins were between Can$1,250 and Can$1,350 ha−1 and between Can$682 and Can$835 ha−1, respectively. Therefore, provided that OSR does not set viable seed, the cover crops tested are feasible and profitable options to include in sweet corn production and provide weed-suppression benefits.

La efectividad de los cultivos de cobertura como una estrategia alternativa para el control de malezas debe ser evaluada, en vista del incremento en la demanda de alimentos y fibras cultivadas bajo prácticas agrícolas sustentables. Este estudio evaluó el efecto de cultivos de cobertura de otoño en las poblaciones de maleza en la misma estación, en la primavera anterior a la siembra y durante el crecimiento del maíz dulce. El diseño del experimento fue de parcela divida con la rotación de chícharo-cultivo de cobertura-maíz dulce, con el tipo de cultivo de cobertura de otoño como factor principal de la parcela y con la presencia o ausencia de malezas en el maíz dulce como el factor de la parcela dividida. Los tratamientos de cultivos de cobertura fueron: un testigo sin cultivo de cobertura, avena, centeno, rábano oleaginoso, y rábano oleaginoso + centeno. En Ridgetown, durante el otoño, la biomasa de la maleza con los tratamientos de rábano oleaginoso fue 29 y 59 g m-2 menor que en el testigo y los tratamientos de avena y centeno, respectivamente. En la primavera, el rábano oleaginoso + centeno y centeno redujeron la biomasa de la maleza, la densidad y la riqueza de la flora por debajo de los niveles observados en la parcela testigo en Bothwell. En Ridgetown, en la primavera, los cultivos de cobertura no tuvieron efecto en las poblaciones de maleza. Durante la estación del maíz dulce, las poblaciones de maleza y el rendimiento del maíz, generalmente, no se vieron afectados por los cultivos de cobertura, siempre y cuando el rábano oleaginoso no produjera semillas viables. Todos los tratamientos de cultivos de cobertura fueron tan o más lucrativos que los tratamientos sin cobertura. En Bothwell, los márgenes de utilidad fueron mayores para la avena, con casi 600 dólares canadienses por ha-1, más que los que no tuvieron cultivo de cobertura. En comparación con el tratamiento sin cobertura, en Ridgetown, los márgenes de utilidad para el rábano oleaginoso y el rábano oleaginoso + centeno fueron entre 1,250 y 1,350 y entre 682 y 835 dólares canadienses por ha-1, respectivamente. Por lo tanto, siempre y cuando el rábano oleaginoso no produzca semillas viables, los cultivos de cobertura probados serían opciones factibles y lucrativas para incluir en la producción de maíz dulce y proporcionar beneficios en la supresión de malezas.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barberi, P. and Mazzoncini, M. 2001. Changes in weed community composition as influenced by cover crop and management system in continuous corn. Weed Sci. 49:491499.Google Scholar
Bollero, G. A. and Bullock, D. G. 1994. Cover cropping systems for the Central Corn Belt. J. Prod. Agric. 7:5558.CrossRefGoogle Scholar
Boydston, R. A. and Hang, A. 1995. Rapeseed (Brassica napus) green manure crop suppresses weeds in potato (Solanum tuberosum). Weed Technol. 9:669675.Google Scholar
Brennan, E. B. and Smith, R. F. 2005. Winter cover crop growth and weed suppression on the central coast of California. Weed Technol. 19:10171024.Google Scholar
Burgos, N. R. and Talbert, R. E. 1996. Weed control and sweet corn (Zea mays var rugosa) response in a no-till system with cover crops. Weed Sci. 44:355361.CrossRefGoogle Scholar
Carrera, L. M., Abdul-Baki, A. A., and Teasdale, J. R. 2004. Cover crop management and weed suppression in no-tillage sweet corn production. HortScience 39:12621266.CrossRefGoogle Scholar
Charles, K. S., Ngouajio, M., Warncke, D. D., Poff, K. L., and Hausbeck, M. K. 2006. Integration of cover crops and fertilizer rates for weed management in celery. Weed Sci. 54:326334.Google Scholar
Clark, A. J., Decker, A. M., Meisinger, J. J., Mulford, F. R., and McIntosh, M. S. 1995. Hairy vetch kill date effects on soil-water and corn production. Agron. J. 87:579585.CrossRefGoogle Scholar
Creamer, N. G., Bennett, M. A., Stinner, B. R., and Cardina, J. 1996. A comparison of four processing tomato production systems differing in cover crop and chemical inputs. J. Am. Soc. Hort. Sci. 121:559568.CrossRefGoogle Scholar
Fahey, J. W., Zalcmann, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:551.CrossRefGoogle ScholarPubMed
Frye, W. W., Smith, W. G., and Williams, R. J. 1985. Economics of winter cover crops as a source of nitrogen for no-till corn. J. Soil Water Conserv. 40:246249.Google Scholar
Fukai, S. and Trenbath, B. R. 1993. Processes determining intercrop productivity and yields of component crops. Field Crops Res. 34:247271.Google Scholar
Galloway, B. A. and Weston, L. A. 1996. Influence of cover crop and herbicide treatment on weed control and yield in no-till sweet corn (Zea mays L.) and pumpkin (Cucurbita maxima Duch.). Weed Technol. 10:341346.Google Scholar
Hanson, J. C., Lichtenberg, E., Decker, A. M., and Clark, A. J. 1993. Profitability of no-tillage corn following a hairy vetch cover crop. J. Prod. Agric. 6:432437.CrossRefGoogle Scholar
Johnson, G. A., Defelice, M. S., and Helsel, Z. R. 1993. Cover crop management and weed-control in corn (Zea mays). Weed Technol. 7:425430.CrossRefGoogle Scholar
Justes, E., Mary, B., and Nicolardot, B. 1999. Comparing the effectiveness of radish cover crop, oilseed rape volunteers and oilseed rape residues incorporation for reducing nitrate leaching. Nutr. Cycling Agroecosyst. 55:207220.CrossRefGoogle Scholar
Kelly, T. C., Lu, Y. C., Abdul-Baki, A. A., and Teasdale, J. R. 1995. Economics of a hairy vetch mulch system for producing fresh-market tomatoes in the mid-Atlantic region. J. Am. Soc. Hort. Sci. 120:854860.Google Scholar
Koger, C. H., Reddy, K. N., and Shaw, D. R. 2002. Effects of rye cover crop residue and herbicides on weed control in narrow and wide row soybean planting systems. Weed Biol. Manag. 2:216224.Google Scholar
Larson, J. A., Roberts, R. K., Tyler, D. D., Duck, B. N., and Slinsky, S. P. 1998. Stochastic dominance analysis of winter cover crop and nitrogen fertilizer systems for no-tillage corn. J. Soil Water Conserv. 53:285288.Google Scholar
Lichtenberg, E., Hanson, J. C., Decker, A. M., and Clark, A. J. 1994. Profitability of legume cover crops in the mid Atlantic region. J. Soil Water Conserv. 49:582585.Google Scholar
Lu, Y., Watkins, K., Teasdale, J. R., and Abdul-Baki, A. 2000. Cover crops in sustainable food production. Food Rev. Int. 16:121157.Google Scholar
Mailvaganam, S. 2008. Area, production and farm value of specified commercial vegetable crops, Ontario, 2007. http://www.omafra.gov.on.ca/english/stats/hort/veg_m07.htm. Accessed: November 20, 2008.Google Scholar
Malik, M. S., Norsworthy, J. K., Culpepper, A. S., Riley, M. B., and Bridges, W. 2008. Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 56:588595.Google Scholar
Mallory, E. B., Posner, J. L., and Baldock, J. O. 1998. Performance, economics, and adoption of cover crops in Wisconsin cash grain rotations: on-farm trials. Am. J. Alternative Agric. 13:211.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33:487499.Google Scholar
Moonen, A. C. and Barberi, P. 2004. Size and composition of the weed seedbank after 7 years of different cover-crop-maize management systems. Weed Res. 44:163177.Google Scholar
Ngouajio, M. and Mennan, H. 2005. Weed populations and pickling cucumber (Cucumis sativus) yield under summer and winter cover crop systems. Crop Prot. 24:521526.Google Scholar
Ngouajio, M., McGiffen, M. E. Jr., and Hutchinson, C. M. 2003. Effect of cover crop and management system on weed populations in lettuce. Crop Prot. 22:5764.Google Scholar
Peachey, R. E., William, R. D., and Mallory-Smith, C. 2004. Effect of no-till or conventional planting and cover crops residues on weed emergence in vegetable row crop. Weed Technol. 18:10231030.CrossRefGoogle Scholar
Roberts, R. K., Larson, J. A., Tyler, D. D., Duck, B. N., and Dilivan, K. D. 1998. Economic analysis of the effects of winter cover crops on no-tillage corn yield response to applied nitrogen. J. Soil Water Conserv. 53:280284.Google Scholar
Sarrantonio, M. and Gallandt, E. 2003. The role of cover crops in North American cropping systems. J. Crop Prod. 8:5374.Google Scholar
Schomberg, H. H., Endale, D. M., Calegari, A., Peixoto, R., Miyazawa, M., and Cabrera, M. L. 2006. Influence of cover crops on potential nitrogen availability to succeeding crops in a southern piedmont soil. Biol. Fertil. Soils 42:299307.Google Scholar
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688.CrossRefGoogle Scholar
Snapp, S. S., Swinton, S. M., Labarta, R., Mutch, D. R., Black, J. R., Leep, R., Nyiraneza, J., and O'Neil, K. 2005. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97:322332.Google Scholar
Tawaha, A. M. and Turk, M. A. 2003. Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J. Agron. Crop Sci. 189:298303.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9:475479.Google Scholar
Turk, M. A. and Tawaha, A. M. 2003. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot. 22:673677.Google Scholar
Varco, J. J., Spurlock, S. R., and Sanabria-Garro, O. R. 1999. Profitability and nitrogen rate optimization associated with winter cover management in no-tillage cotton. J. Prod. Agric. 12:9195.Google Scholar
Vaughn, S. F. and Boydston, R. A. 1997. Volatile allelochemicals released by Crucifer green manures. J. Chem. Ecol. 23:21072116.Google Scholar
Yiridoe, E. K., Weersink, A., Roy, R. C., and Swanton, C. J. 1993. Economic analysis of alternative cropping systems for a bean/wheat rotation on light textured soils. Can. J. Plant Sci. 73:405415.Google Scholar