Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:29:25.192Z Has data issue: false hasContentIssue false

Volunteer Glyphosate-Resistant Corn Interference and Control in Glyphosate-Resistant Sugarbeet

Published online by Cambridge University Press:  20 January 2017

Andrew R. Kniss*
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Gustavo M. Sbatella
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff, NE 69361
Robert G. Wilson
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff, NE 69361
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate-resistant (GR) sugarbeet is commonly grown in rotation with GR corn, but there is limited information relating to volunteer GR corn interference or control in GR sugarbeet. Field studies were conducted near Lingle, WY and Scottsbluff, NE in 2009 and 2010 to quantify sugarbeet yield loss in response to volunteer corn density and duration of interference, and determine appropriate control practices for use in GR sugarbeet. Hybrid corn resulted in a similar competitive effect on sugarbeet sucrose yield as clumps of F2 volunteer corn. Clumps of volunteer corn were controlled 81% compared with 73% for individual plants. Linear regression indicated sucrose yield loss of 19% for each corn plant m−2 up to 1.7 plants m−2 at three of four experimental sites. Pearson correlation coefficients between percentage sucrose yield loss and proportion of sunlight reaching the top of the sugarbeet canopy ranged from −0.42 to −0.92. The duration of corn interference required to cause a 5% sucrose yield loss (Y L5) ranged from 3.5 to 5.9 wk after sugarbeet emergence (WAE) for hand-weeding or herbicide removal, respectively, due to the length of time herbicide-treated volunteer corn continued to shade sugarbeet plants. Differences between herbicide and hand-removal methods were attributed to the time lag between when the treatments were applied and when the corn ceased to block light from the sugarbeet canopy. Sethoxydim generally provided less volunteer corn control compared with either quizalofop or clethodim, and control increased with the addition of an oil adjuvant. If a grower were to implement a volunteer corn control practice 3.5 WAE, economic sugarbeet yield loss would be avoided. In eastern Wyoming and western Nebraska, the sugarbeet crop will typically have between four to eight true leaves at 3.5 WAE, and therefore this would be an optimal time to control volunteer corn. If volunteer corn is being hand weeded, the Y L5 estimate will also increase, and thus the window of time to control volunteer corn would be wider.

La remolacha azucarera resistente al glifosato (GR) es comúnmente cultivada en rotación con maíz GR, pero existe información limitada relacionada a la interferencia o control del maíz voluntario GR en remolacha azucarera GR. En 2009 y 2010 se realizaron estudios de campo cerca de Lingle, Wyoming y Scottsbluff, Nebraska para cuantificar la pérdida en el rendimiento de la remolacha en respuesta a la densidad del maíz voluntario y a la duración de la interferencia, así como para determinar prácticas apropiadas de control para su uso en la remolacha GR. El maíz híbrido tuvo un efecto competitivo similar al de grupos de plantas de maíz voluntario F2 sobre el rendimiento de la sacarosa en la remolacha. Los grupos de plantas de maíz voluntario se controlaron 81% en comparación al 73% de plantas individuales. Una regresión lineal indicó que había una pérdida en el rendimiento de la sacarosa de 19% por cada planta de maíz por m2 hasta 1.7 plantas por m2 en tres de los cuatro sitios experimentales. Los coeficientes de correlación Pearson entre el porcentaje de pérdida de rendimiento de la sacarosa y la porción de luz solar que alcanzó el dosel de la remolacha, variaron de −0.42 a −0.92. La duración de la interferencia de maíz requerida para causar un 5% de pérdida en el rendimiento de la sacarosa (YL5) varió de 3.5 a 5.9 semanas después de la emergencia de la remolacha(WAE) en el caso de remoción por herbicida o deshierba manual, respectivamente, debido a la duración del tiempo que el maíz voluntario tratado con herbicida continuó dando sombra a las plantas de la remolacha. Las diferencias entre el herbicida y la deshierba manual fueron atribuidas al intervalo de tiempo entre cuando los tratamientos se aplicaron y cuando el maíz dejó de bloquear la luz en el dosel de la remolacha. El sethoxydim generalmente proporcionó menor control del maíz voluntariocomparado ya sea con quizalofop o clethodim, y el control se incrementó con la adición de un aceite adyuvante. Si un agricultor fuera a implementar una práctica de control de maíz voluntario 3.5 WAE, la pérdida económica en el rendimiento podría evitarse. En el este de Wyoming y oeste de Nebraska, la remolacha tendría típicamente entre 4 y 8 hojas a las 3.5 WAE, y por lo tanto, este sería un tiempo óptimo para controlar el maíz voluntario. Si el maíz voluntario se elimina manualmente, la estimación YL5 se incrementaría, y por lo tanto, la ventana de oportunidad para controlar el maíz voluntario sería más amplia.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, R. N., Ford, J. H., and Lueschen, W. E. 1982. Controlling volunteer corn (Zea mays) in soybeans (Glycine max) with diclofop and glyphosate. Weed Sci. 30:132136.CrossRefGoogle Scholar
Andersen, R. N. and Geadelmann, J. L. 1982. The effect of parentage on the control of volunteer corn (Zea mays) in soybeans (Glycine max). Weed Sci. 30:127131.CrossRefGoogle Scholar
Anonymous. 1992. LAI-2000 Plant Canopy Analyzer Operating Manual. Lincoln, NE LI-COR, Inc. 175 p.Google Scholar
Anonymous. 2007. Select 2 EC herbicide product label. Walnut Creek, CA Valent U.S.A. Corporation. 30 p.Google Scholar
Anonymous. 2010a. DuPont Assure II herbicide product label. Wilmington, DE E. I. du Pont de Nemours and Company. 13 p.Google Scholar
Anonymous. 2010b. Poast herbicide product label. Research Triangle Park, NC BASF Corporation. 24 p.Google Scholar
Anonymous. 2010c. Select Max herbicide product label. Walnut Creek, CA Valent U.S.A. Corporation. 43 p.Google Scholar
Beckett, T. H. and Stoller, E. W. 1988. Volunteer corn (Zea mays) interference in soybeans (Glycine max). Weed Sci. 36:159166.CrossRefGoogle Scholar
Beckett, T. H., Stoller, E. W., and Bode, L. E. 1992. Quizalofop and sethoxydim activity as affected by adjuvants and ammonium fertilizers. Weed Sci. 40:1219.CrossRefGoogle Scholar
Clewis, S. B., Thomas, W. E., Everman, W. J., and Wilcut, J. W. 2008. Glufosinate-resistant corn interference in glufosinate-resistant cotton. Weed Technol. 22:211216.CrossRefGoogle Scholar
Deen, W., Hamill, A., Schropshire, C., Soltani, N., and Sikkema, P. H. 2006. Control of volunteer glyphosate-resistant corn (Zea mays) in glyphosate-resistant soybean (Glycine max). Weed Technol. 20:261266.CrossRefGoogle Scholar
Dotzenko, A. D. and Arp, A. L. 1971. Yield response of sugarbeets under various light intensities as influenced by kochia density. J. Am. Soc. Sugarbeet Technol. 16:479481.CrossRefGoogle Scholar
Guza, C. J., Ransom, C. V., and Mallory-Smith, C. 2002. Weed control in glyphosate-resistant sugarbeet (Beta vulgaris L.). J. Sugarbeet Res. 39:109123.CrossRefGoogle Scholar
Kemp, N. J., Taylor, E. C., and Renner, K. A. 2009. Weed management in glyphosate- and glufosinate-resistant Sugarbeet. Weed Technol. 23:416424.CrossRefGoogle Scholar
Kniss, A. R. 2010. Comparison of conventional and glyphosate-resistant sugarbeet the year of commercial introduction in Wyoming. J. Sugarbeet Res. 47:127134.CrossRefGoogle Scholar
Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A., and Feuz, D. M. 2004. Economic evaluation of glyphosate-resistant and conventional sugarbeet. Weed Technol. 18:388396.CrossRefGoogle Scholar
Mesbah, A., Miller, S. D., Forntstom, K. J., and Legg, D. E. 1994. Kochia (Kochia scoparia) and green foxtail (Setaria viridis) interference in sugarbeets (Beta vulgaris). Weed Technol. 8:754759.CrossRefGoogle Scholar
Mesbah, A., Miller, S. D., Fornstrom, K. J., and Legg, D. E. 1995. Wild mustard (Brassica kaber) and wild oat (Avena fatua) interference in sugarbeets (Beta vulgaris). Weed Technol. 9:4952.CrossRefGoogle Scholar
Odero, D. C., Mesbah, A. O., Miller, S. D., and Kniss, A. R. 2009. Venice mallow (hibiscus trionum) interference in sugarbeet. Weed Technol. 23:581585.CrossRefGoogle Scholar
Odero, D. C., Mesbah, A. O., Miller, S. D., and Kniss, A. R. 2010a. Wild buckwheat (Polygonum convolvulus) interference in sugarbeet. Weed Technol. 24:5963.CrossRefGoogle Scholar
Odero, D. C., Mesbah, A. O., Miller, S. D., and Kniss, A. R. 2010b. Lanceleaf sage (Salvia reflexa) interference in sugarbeet. Weed Technol. 24:557561.CrossRefGoogle Scholar
Odero, D. C., Mesbah, A. O., Miller, S. D., and Kniss, A. R. 2011. Interference of redstem filaree (Erodium cicutarium) in sugarbeet. Weed Sci. 59:310313.CrossRefGoogle Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Software. 12(5):URL: http://www.jstatsoft.org/.Google Scholar
Schweizer, E. E. 1981. Broadleaf weed interference in sugarbeets (Beta vulgaris). Weed Sci. 29:128133.CrossRefGoogle Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Soltani, N., Shropshire, C., and Sikkema, P. H. 2006. Control of volunteer glyphosate-tolerant maize (Zea mays) in glyphosate-tolerant soybean (Glycine max). Crop Prot. 25:178181.CrossRefGoogle Scholar
Tao, B., Zhou, J., Messersmith, C. G., and Nalewaja, J. D. 2007. Efficacy of glyphosate plus bentazon or quizalofop on glyphosate-resistant canola or corn. Weed Technol. 21:97101.CrossRefGoogle Scholar
Thomas, W. E., Everman, W. J., Clewis, S. B., and Wilcut, J. W. 2007. Glyphosate-resistant corn interference in glyphosate-resistant cotton. Weed Technol. 21:372377.CrossRefGoogle Scholar
[USDA-ERS] U.S. Department of Agriculture–Economic Research Service. 2011. Adoption of genetically engineered crops in the U.S.: Corn varieties. http://www.ers.usda.gov/Data/BiotechCrops/ExtentofAdoptionTable1.htm. Accessed: November 16, 2011.Google Scholar
VanGessel, M. J., Johnson, Q., and Isaacs, M. 1997. Response of sethoxydim-resistant corn (Zea mays) hybrids to postemergence graminicides. Weed Technol. 11:598601.CrossRefGoogle Scholar
Wilson, R. G., Yonts, C. D., and Smith, J. A. 2002. Influence of glyphosate and glufosinate on weed control and sugarbeet (Beta vulgaris) yield in herbicide-tolerant sugarbeet. Weed Technol. 16:6673.CrossRefGoogle Scholar
Young, B. G. and Hart, S. E. 1997. Control of volunteer sethoxydim-resistant corn (Zea mays) in soybean (Glycine max). Weed Technol. 11:649655.CrossRefGoogle Scholar