Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T21:10:58.631Z Has data issue: false hasContentIssue false

Vegetable Soybean Tolerance to Bentazon, Fomesafen, Imazamox, Linuron, and Sulfentrazone

Published online by Cambridge University Press:  20 January 2017

Martin M. Williams II*
Affiliation:
USDA-Agricultural Research Service, Global Change and Photosynthesis Research Unit, Urbana, IL 61801
Randall L. Nelson
Affiliation:
USDA-Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].

Abstract

Poor weed control, resulting from limited herbicide availability and undeveloped integrated weed management systems, is a major hurdle to production of vegetable soybean in the United States. Vegetable soybean, the same species as grain-type soybean, has few registered herbicides because of unknown crop tolerance. Tolerance of as many as 128 vegetable soybean entries to a 2X registered rate of bentazon, fomesafen, imazamox, linuron, and sulfentrazone were quantified within 4 wk after treatment in field trials. Several grain-type soybean entries were included for comparison, including entries with known herbicide tolerance or sensitivity. Injury and seedling growth reduction to all vegetable entries was comparable to all grain-type entries for fomesafen, linuron, and sulfentrazone; and less than all grain-type entries for bentazon and imazamox. Responses of ten of the more widely used vegetable soybean entries were comparable to grain-type entries with known herbicide tolerance. Bentazon, fomesafen, imazamox, linuron, and sulfentrazone pose no greater risk of adverse crop response to vegetable soybean germplasm than the grain-type soybean to which they have been applied for years. Since initiation of this research, fomesafen, imazamox, and linuron are now registered for use on the crop in the United States. Development of integrated weed management systems for vegetable soybean would benefit from additional herbicide registrations.

Control de malezas deficiente como resultado de una disponibilidad limitada de herbicidas y de sistemas de manejo integrado de malezas poco desarrollados, es un obstáculo importante a la producción de soya tipo-hortaliza en los Estados Unidos. La soya tipo-hortaliza, que es la misma especie que la soya tipo-grano, tiene pocos herbicidas registrados porque se desconoce su tolerancia. La tolerancia de 128 accesiones de soya tipo-hortaliza a 2X de la dosis de registro de bentazon, fomesafen, imazamox, linuron, y sulfentrazone fue cuantificada a 4 semanas después del tratamiento en experimentos de campo. Varias accesiones de soya tipo-grano fueron incluidas para comparación, incluyendo accesiones con tolerancia o susceptibilidad a herbicidas conocidas. El daño y la reducción del crecimiento de plántulas de todas las accesiones tipo-hortaliza fueron comparables a todas las accesiones tipo-grano para fomesafen, linuron, y sulfentrazone, y fueron menores que para las accesiones tipo-grano para bentazon e imazamox. La respuesta de diez de las accesiones tipo-hortaliza más ampliamente usadas fueron comparables con las accesiones tipo-grano con tolerancia a herbicidas conocida. Bentazon, fomesafen, imazamox, linuron, y sulfentrazone no representan un riesgo mayor de una respuesta adversa del cultivo de soya tipo-hortaliza que la soya tipo-grano, a la cual estos herbicidas han sido aplicados por años. Desde que se inició esta investigación, fomesafen, imazamox, y linuron fueron registrados para el uso en el cultivo en Estados Unidos. El desarrollo de sistemas de manejo integrado de malezas para soya tipo-hortaliza se beneficiaría de registros de herbicidas adicionales.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2012) Lorox® DF herbicide supplemental labeling. Phoenix, AZ: Tessenderlo Kerley, Inc. 2 pGoogle Scholar
Anonymous (2013) Raptor® herbicide supplemental labeling. Research Triangle Park, NC: BASF Corporation. 3 pGoogle Scholar
Anonymous (2014) Reflex® herbicide supplemental labeling. Greensboro, NC: Syngenta Crop Protection LLC. 3 pGoogle Scholar
Altemose, CE, Lingenfelter, DD, Curran, WS, VanGessel, MJ (2011) Edamame production and herbicide tolerance. Page 96 in 65th Annual Meeting of the Northeastern Weed Science Society. Baltimore, MD: Northeastern Weed Science Society Google Scholar
Andrews, CJ, Skipsey, M, Townson, JK, Morris, C, Jepson, I, Edwards, R (1997) Glutathione transferase activities toward herbicides used selectively in soybean. Pest Sci 51:213222 Google Scholar
Bernard, RL, Wax, LM (1975) Inheritance of a sensitive reaction to bentazon herbicide. Soybean Gen News 2:4647 Google Scholar
Dayan, FE, Weete, JD, Duke, SO, Hancock, HG (1997) Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci 45:634641 Google Scholar
Evans, JDHL, Cavell, BD, Highnett, RR (1987) Fomesafen: metabolism as a basis for its selectivity in soya. Pages 345352 in Proceedings of the British Crop Protection Conference – Weeds. Alton, England BCPC Google Scholar
Green, JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:13231331 Google Scholar
Hulting, AG, Wax, LM, Nelson, RL, Simmons, FW (2001) Soybean (Glycine max (L.) Merr.) cultivar tolerance to sulfentrazone. 20:679683 Google Scholar
IR-4 Project (2009) A strategic plan for the IR-4 project (2009–2014). http://ir4.rutgers.edu/Other/AnnualReports/StrategicPlanFinal.pdf. Accessed January 1, 2014Google Scholar
IR-4 Project (2012) Index of crops/crop groups/crop subgroups, and crop definitions. http://ir4.rutgers.edu/Other/CropGroup.htm. Accessed April 14, 2014.Google Scholar
Li, Z, Wehtje, GR, Walker, RH (2000) Physiological basis for the differential tolerance of Glycine max to sulfentrazone during seed germination. Weed Sci 48:281285 Google Scholar
Neter, J, Kutner, MH, Nachtsheim, CJ, Wasserman, W (1996) Applied linear statistical models. 4th edn. Chicago: Irwin. 1408 pGoogle Scholar
Pornprom, T, Sukcharoenvipharat, W, Sansiriphun, D (2010) Weed control with pre-emergence herbicides in vegetable soybean (Glycine max L. Merrill). Crop Protect 29:684690 Google Scholar
Sams, CE, Pantalone, VR, Kopsell, DA, Zivanovic, S, Deyton, DE (2012) Edamame: a potential high value crop for growers. Proceedings of the Mid-Atlantic Fruit and Vegetable Convention. Hershey, PA: Mid-Atlantic Fruit and Vegetable Convention Google Scholar
Shockley, J, Dillon, C, Woods, T (2011) Estimating the economic viability of a new crop alternative for the U.S. organic market: edamame – a vegetable soybean. Agricultural and Applied Economics Association's 2011 Meeting, Pittsburgh, PA Google Scholar
Shurtleff, W, Aoyagi, A (2009) History of edamame, green vegetable soybeans, and vegetable-type soybeans (1275–2009): extensively annotated bibliography and sourcebook. Lafayette, CA: Soyinfo Center. 764 pGoogle Scholar
Swantek, JM, Sneller, CH, Oliver, LR (1998) Evaluation of soybean injury from sulfentrazone and inheritance of tolerance. Weed Sci 46:271277 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Nelson, R (2001) Phytotoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol 15:95102 Google Scholar
USDA-ARS (2014) National Plant Germplasm System. http://www.ars-grin.gov/npgs/. Accessed February 14, 2014Google Scholar
Wax, LM, Bernard, RL, Hayes, RM (1974) Response of soybean cultivars to bentazon, bromoxynil, chloroxuron, and 2,4-DB. Weed Sci 22:3540 Google Scholar
Zhimdahl, RL (2004) Weed-crop competition, a review. 2nd edn. Ames, IA: Blackwell. Pp 5775 CrossRefGoogle Scholar