Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:26:17.384Z Has data issue: false hasContentIssue false

Variable Response of Common Waterhemp (Amaranthus rudis) Populations and Individuals to Glyphosate

Published online by Cambridge University Press:  20 January 2017

David A. Smith
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-1155
Steven G. Hallett*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-1155
*
Corresponding author's E-mail: [email protected]

Abstract

Putatively resistant (PR) and putatively susceptible (PS) common waterhemp populations were grown in the greenhouse and sprayed at the three- to four-leaf stage with glyphosate (0.63 kg ae/ha). Surviving plants from PR populations and randomly selected plants from PS populations were clonally propagated and the clones were sprayed with 0.1 to 10.0 kg/ha glyphosate. The glyphosate rates required to reduce growth by 50% (GR50) among the clones were relatively similar, but the concentration required to reduce growth by 90% (GR90) ranged from 1.5 to 16.3 kg/ha. The concentration of glyphosate required to kill 90% of plants (LD90) ranged from 2.3 kg/ha to over 10.0 kg/ ha. This range of responses to glyphosate in common waterhemp clones from different parts of the Midwestern United States indicates a risk of evolution of resistance in common waterhemp populations that are repeatedly selected by applications of glyphosate in the field.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Boerboom, C. M., Wyse, D. L., and Somers, D. A. 1990. Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus). Weed Sci. 38:463467.CrossRefGoogle Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189198.CrossRefGoogle Scholar
Cordes, J. C., Johnson, W. G., Scharf, P., and Smeda, R. J. 2004. Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol. 18:9991005.CrossRefGoogle Scholar
DeGennaro, F. P. and Weller, S. C. 1984. Differential sensitivity of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci. 32:472476.CrossRefGoogle Scholar
Duke, S. O. 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61:211218.CrossRefGoogle ScholarPubMed
Gressel, J. 1995. Creeping resistances: the outcome of using marginally effective or reduced rates of herbicides. Proc. Brighton Crop Prot. Conf.— Weeds. Surrey, U.K.: BCPC Farnham. Pp. 587589.Google Scholar
Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.CrossRefGoogle ScholarPubMed
Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York: J. Wiley. Pp. 325348.Google Scholar
Hartzler, R. G., Bruce, B., and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci. 52:242245.CrossRefGoogle Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L.) Gaertn) in Malaysia. Pest Manag. Sci. 56:336339.3.0.CO;2-8>CrossRefGoogle Scholar
Li, J. M., Smeda, R. J., Nelson, K. A., and Dayan, F. E. 2004. Physiological basis for resistance to diphenyl ether herbicides in common waterhemp (Amaranthus rudis). Weed Sci. 52:333338.CrossRefGoogle Scholar
Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.CrossRefGoogle Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.CrossRefGoogle ScholarPubMed
Patzoldt, W. L., Dixon, B. S., and Tranel, P. J. 2003. Triazine resistance in Amaranthus tuberculatus (Moq) Sauer that is not site of action mediated. Pest Manag. Sci. 59:11341142.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.CrossRefGoogle Scholar
Perez, A. and Kogan, M. 2003. Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Res. 43:1219.CrossRefGoogle Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Pratley, J. E., Baines, P., Eberbac, R., Incerti, M., and Broster, J. 1996. Glyphosate resistance in annual ryegrass. in Virgona, J. and Michalk, D., eds. Proceedings of the 11th Annual Grasslands Society of New South Wales. Wagga Wagga, New South Wales, Australia: The Grasslands Society of New South Wales. P. 126.Google Scholar
Seefeldt, S. S., Gealy, D. R., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Sellers, B. A., Pollard, J. M., and Smeda, R. J. 2005. Two common ragweed (Ambrosia artemisiifolia) biotypes differ in biology and response to glyphosate. Proc. Weed Sci. Soc. Am. Abstr. 45:47.Google Scholar
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 51:145150.CrossRefGoogle Scholar
Simarmata, M., Kaufmann, J. E., and Penner, D. 2003. Potential basis for glyphosate resistance in California rigid ryegrass (Lolium rigidum). Weed Sci. 51:678682.CrossRefGoogle Scholar
Tranel, P. J., Jiang, W. L., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52:236241.CrossRefGoogle Scholar
Urbano, J. M., Borrego, A., Torres, V., Jimenez, C., Leon, J. M., and Barnes, J. 2005. Glyphosate-resistant hairy fleabane (Conyza bonariensis) in Spain. Proc. Weed Sci. Soc. Am. Abstr. 45:118.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Zelaya, I. A. and Owen, M. D. K. 2005. Differential response of Amaranthus tuberculatus (Moq ex.DC) JD Sauer to glyphosate. Pest Manag. Sci. 61:936950.CrossRefGoogle Scholar