Article contents
Uptake, Translocation, and Metabolism of Chlorimuron in Soybean (Glycine max) and Morningglory (Ipomoea spp.)
Published online by Cambridge University Press: 12 June 2017
Abstract
The uptake, translocation, and metabolism of the ethyl ester of chlorimuron in three soybean cultivars and two morningglory species was investigated. Soybean used included the normal cultivars ‘Vance’ and ‘Essex,’ and the sulfonylurea-resistant cultivar ‘W-20.’ Entireleaf morningglory and pitted morningglory, both moderately tolerant to chlorimuron, were used. Twenty-day-old seedlings of all plant species were exposed to root-applied 14C-labeled chlorimuron for 6, 24, and 72 h. After 24 and 72 h, chlorimuron uptake was lowest in W-20 soybean and the two morningglory species. Translocation of root-absorbed chlorimuron to shoots and leaves of all species was limited and it did not differ among species. The moderate tolerance of pitted and entireleaf morningglories to chlorimuron may be due to reduced herbicide uptake. The response of Essex and Vance soybean to chlorimuron was related to herbicide metabolism. At 6 h after treatment with radiolabeled chlorimuron, Essex soybean metabolized the herbicide more rapidly than either W-20 or Vance soybean. At 24 h and 72 h, Essex and Vance soybean metabolized chlorimuron to the same extent. W-20 was not very efficient in metabolizing chlorimuron at any time after treatment and its resistance to chlorimuron is due to an altered target site.
Keywords
- Type
- Research
- Information
- Copyright
- Copyright © 1993 Weed Science Society of America
References
Literature Cited
- 9
- Cited by