Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T19:48:23.722Z Has data issue: false hasContentIssue false

Tropic Croton Interference in Peanut

Published online by Cambridge University Press:  20 January 2017

Walter E. Thomas
Affiliation:
North Carolina State University, P.O. Box 7620, Raleigh, NC 27695
Shawn D. Askew
Affiliation:
Virginia Polytechnic Institute and State University, P.O. Box 0330, Blacksburg, VA 24061
John W. Wilcut*
Affiliation:
North Carolina State University, P.O. Box 7620, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected]

Abstract

Studies were conducted to evaluate density-dependent effects of tropic croton on weed and peanut growth and peanut yield. Tropic croton remained taller than peanut throughout the growing season, yet tropic croton density did not affect peanut or tropic croton heights. Tropic croton biomass per plant decreased linearly with increasing plant density. Peanut pod weight decreased linearly 4.7 kg/ha with each gram of increase in tropic croton biomass per meter of crop row. The rectangular hyperbola model was used to describe effects of tropic croton density on percent peanut yield loss. Estimated coefficients for a (maximum yield loss) and i (yield loss per unit density as density approaches zero) were 81 and 26 in 1988, 41 and 33 in 1989, and 33 and 61 in 1998, respectively. Although a and i values varied between years, yield loss predictions were stable between years at weed densities below two plants per meter of crop row. Even though the results show that tropic croton is less competitive than many broadleaf weeds in peanut, it has potential to substantially reduce yields and subsequently reduce economic return.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1999. Crop Protection Reference. 15th ed. New York: C & P. P. F119.Google Scholar
Askew, S. D. and Wilcut, J. W. 2001. Tropic croton interference in cotton. Weed Sci. 49:184189.CrossRefGoogle Scholar
Askew, S. D. and Wilcut, J. W. 2002. Ladysthumb interference and seed production in cotton. Weed Sci. 50:326332.CrossRefGoogle Scholar
Bailey, W. A. and Wilcut, J. W. 2002. Diclosulam systems for weed management in peanut (Arachis hypogaea L). Weed Technol. 16:807814.Google Scholar
Bailey, W. A., Wilcut, J. W., Jordan, D. L., Swann, C. W., and Langston, V. B. 1999a. Weed management in peanut (Arachis hypogaea) with diclosulam preemergence. Weed Technol. 13:450456.Google Scholar
Bailey, W. A., Wilcut, J. W., Jordan, D. L., Swann, C. W., and Langston, V. B. 1999b. Response of peanut (Arachis hypogaea) and selected weeds to diclosulam. Weed Technol. 13:771776.Google Scholar
Barbour, M. G., Burk, J. H., and Pitts, W. D. 1980. Plant water relations. in Terrestrial Plant Ecology. Menlo Park, CA: Benjamin/Cummings. Pp. 458483.Google Scholar
Bridges, D. C., Brecke, B. J., and Barbour, J. C. 1992. Wild poinsettia (Euphorbia heterophylla) interference with peanut (Arachis hypogaea). Weed Sci. 40:3742.Google Scholar
Bridges, D. C. and Chandler, J. M. 1987. Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci. 35. 6367.Google Scholar
Buchanan, G. A., Murray, D. S., and Hauser, E. W. 1982. Weeds and their control in peanuts. in Pattee, H. E. and Young, C. T., eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society. P. 5.Google Scholar
Cardina, J. and Brecke, B. J. 1989. Growth and development of Florida beggarweed (Desmodium tortuosum) selections. Weed Sci. 37:207210.CrossRefGoogle Scholar
Clewis, S. C., Askew, S. D., and Wilcut, J. W. 2001. Common ragweed interference in peanut. Weed Sci. 49:768772.Google Scholar
Coble, H. D. and Byrd, J. D. Jr. 1992. Interference of weeds with cotton. in Weeds of Cotton: Characteristics and Control. Memphis, TN: The Cotton Foundation. Pp. 7385.Google Scholar
Cousens, R. 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res 28:281289.Google Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York: J. Wiley. Pp. 3342, 511.Google Scholar
Gaudet, C. L. and Keddy, P. A. 1988. A comparitive approach to predicting competitive ability from plant traits. Nature 334:242243.Google Scholar
Gooden, D. T., Stabler, G. F., Kalmowitz, D. E., and Campbell, T. R. 1996. Management of common ragweed and tropic croton in peanuts with Cadre™ combinations. Proc. South. Weed Sci. Soc 49:1213.Google Scholar
Grey, T. L., Bridges, D. C., and Eastin, E. F. 2001. Influence of application rate and timing of diclosulam on weed control in peanut (Arachis hypogaea L). Peanut Sci 28:1319.Google Scholar
Grichar, W. J., Besler, B. A., and Brewer, K. D. 2002. Citronmelon (Citrullus lanatus var. citroides) control in Texas peanut (Arachis hypogaea) using soil-applied herbicides. Weed Technol. 16:528531.Google Scholar
Grichar, W. J. and Nester, P. R. 1997. Nutsedge (Cyperus spp.) control in peanut (Arachis hypogaea) with AC 263,222 and imazethapyr. Weed Technol. 11:714719.Google Scholar
Hauser, E. W., Buchanan, G. A., Nichols, R. L., and Patterson, R. M. 1982. Effects of Florida beggarweed (Desmodium tortuosum) and sicklepod (Cassia obtusifolia) on peanut (Arachis hypogaea) yield. Weed Sci. 30:602604.Google Scholar
Jasieniuk, M., Maxwell, B. D., and Anderson, R. L. et al. 1999. Site-to-site and year-to-year variation in Triticum aestivum-Aegilops cylindrica interference relationships. Weed Sci. 47:529537.Google Scholar
Jordan, D. L. 2003. Weed management in peanut. in Jordan, et al. eds. Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service. Pp. 2627.Google Scholar
Jordan, D. L., Culpepper, A. S., Batts, R. B., and York, A. C. 1998. Response of Virginia-type peanut to norflurazon. Peanut Sci 25:47.CrossRefGoogle Scholar
Jordan, D. L., Wilcut, J. W., and Fortner, L. D. 1994. Utility of clomazone for annual grass and broadleaf weed control in peanut (Arachis hypogaea). Weed Technol. 8:2327.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J 75:153155.Google Scholar
Radford, A. E., Ahles, H. E., and Bell, C. R. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. Pp. 662663.Google Scholar
Rawlings, J. O., Pantula, S. G., and Dickey, D. A. 1998. Applied Regression Analysis—A Research Tool. 2nd ed. New York: Springer. Pp. 486489.CrossRefGoogle Scholar
Richburg, J. S. III, Wilcut, J. W., Colvin, D. L., and Wiley, G. R. 1996. Weed management in southeastern peanut (Arachis hypogaea) with AC 263,222. Weed Technol. 10:145152.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Eastin, E. F. 1995a. Weed management in peanut (Arachis hypogaea) with imazethapyr and metolachlor. Weed Technol. 9:807812.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Wiley, G. L. 1995b. AC 263,222 and imazethapyr rates and mixtures for weed management in peanut (Arachis hypogaea). Weed Technol. 9:801806.Google Scholar
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997a. Common cocklebur (Xanthium strumarium) interference with peanut (Arachis hypogaea). Weed Sci. 45:3843.Google Scholar
Royal, S. S., Brecke, B. J., Shokes, F. M., and Colvin, D. L. 1997b. Influence of broadleaf weeds on chlorothalonil deposition, foliar disease incidence, and peanut (Arachis hypogaea) yield. Weed Technol. 11:5158.CrossRefGoogle Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Sci. 33:815818.Google Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT® User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Scott, G. H., Askew, S. D., Wilcut, J. W., and Bennett, A. C. 2002. Economic evaluation of HADSS computer program in North Carolina peanut. Weed Sci. 50:91100.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.CrossRefGoogle Scholar
Walker, R. H., Wells, L. W., and McGuire, J. A. 1989. Bristly starbur (Acanthospermum hispidium) interference in peanuts (Arachis hypogaea). Weed Sci. 37:196200.Google Scholar
Webster, T. M. 2001. Weed survey—southern states. Proc. South. Weed Sci. Soc 54:245259.Google Scholar
Wehtje, G. R., Brecke, B. J., and Martin, N. R. 2000. Performance and economic benefit of herbicides used for broadleaf weed control in peanut. Peanut Sci 27:1116.Google Scholar
White, A. D. and Coble, H. D. 1997. Validation of HERB for use in peanut (Arachis hypogaea). Weed Technol. 11:573579.Google Scholar
Wilcut, J. W. 1991. Tropic croton (Croton glandulosus) control in peanut (Arachis hypogaea). Weed Technol. 5:795798.Google Scholar
Young, J. H., Person, N. K., Donald, J. O., and Mayfield, W. H. 1982. Harvesting, curing, and energy utilization. in Pattee, H. E. and Youngs, C. T., eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society. Pp. 458487.Google Scholar