Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:53:20.276Z Has data issue: false hasContentIssue false

Sulfentrazone Enhances Weed Control of Glyphosate in Glyphosate-Resistant Soybean (Glycine max)

Published online by Cambridge University Press:  20 January 2017

Ronald F. Krausz*
Affiliation:
Department of Plant, Soil, and General Agriculture, Center for Excellence in Soybean Research, Teaching, and Outreach, Southern Illinois University, Carbondale, IL 62901-4415
Bryan G. Young
Affiliation:
Department of Plant, Soil, and General Agriculture, Center for Excellence in Soybean Research, Teaching, and Outreach, Southern Illinois University, Carbondale, IL 62901-4415
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted from 1998 to 2000 at Belleville, IL, to evaluate tolerance and weed control in glyphosate-resistant soybean with sulfentrazone application. Sulfentrazone alone caused 14 to 16% height reduction 14 d after treatment (DAT), and sulfentrazone plus chlorimuron caused 26% height reduction 14 DAT. Minimal height reduction (0 to 11%) was observed 56 DAT. Sulfentrazone alone controlled giant foxtail 97 to 100%, yellow nutsedge 96 to 98%, common waterhemp 97 to 98%, common cocklebur 91 to 94%, and ivyleaf morningglory 100%. Sulfentrazone alone controlled common ragweed 63 to 89% and giant ragweed 50 to 72%. Sulfentrazone plus chlorimuron or cloransulam increased control of common and giant ragweed to 95% or greater. Sulfentrazone followed by glyphosate increased control of yellow nutsedge, common waterhemp, and ivyleaf morningglory compared with a single application of glyphosate. Sequential applications of glyphosate controlled weeds 93 to 100%. Sulfentrazone plus chlorimuron or cloransulam postponed the application of glyphosate at the 10-cm weed height by 12 d. Despite the injury, sulfentrazone did not reduce grain yield. Inadequate giant ragweed control reduced grain yield by approximately 48%.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate. Plant Physiol. 66: 830834.CrossRefGoogle ScholarPubMed
Anonymous. 2001. Acreage. National Agricultural Statistics Service. Washington, DC: United States Department of Agriculture.Google Scholar
Blum, R. R., Isgrigg, J. III, and Yelverton, F. H. 2000. Purple (Cyperus rotundus) and yellow nutsedge (C. esculentus) control in bermudagrass (Cynodon dactylon). Weed Technol. 14: 357365.Google Scholar
Corrigan, K. A. and Harvey, R. G. 2000. Glyphosate with and without residual herbicides in no-till glyphosate-resistant soybean (Glycine max). Weed Technol. 14: 569577.Google Scholar
Dayan, F. E., Green, H. M., Weete, J. D., and Hancock, H. G. 1996a. Postemergence activity of sulfentrazone: effects of surfactants and leaf surfaces. Weed Sci. 44: 797803.Google Scholar
Dayan, F. E., Weete, J. D., and Hancock, H. G. 1996b. Physiological basis for differential sensitivity to sulfentrazone by sicklepod (Senna obtusifolia) and coffee senna (Cassia occidentalis). Weed Sci. 44: 1217.CrossRefGoogle Scholar
Delannay, X., Bauman, T. T., and Beighley, D. H. et al. 1995. Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci. 35: 14611467.Google Scholar
Dirks, J. T., Johnson, W. G., Smeda, R. J., Wiebold, W. J., and Massey, R. E. 2000. Use of preplant sulfentrazone in no-till, narrow-row, glyphosate-resistant Glycine max . Weed Sci. 48: 628639.CrossRefGoogle Scholar
Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P. Jr., and Matsumoto, H. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39: 465473.CrossRefGoogle Scholar
Franey, R. J. and Hart, S. E. 1999. Time of application of cloransulam for giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 13: 825828.CrossRefGoogle Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol. 13: 354360.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1996. Control of annual weeds with glyphosate. Weed Technol. 10: 957962.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1998. Sulfentrazone for weed control in soybean (Glycine max). Weed Technol. 12: 684689.Google Scholar
Li, Z., Wehtje, G. R., and Walker, R. H. 2000. Physiological basis for the differential tolerance of Glycine max to sulfentrazone during seed germination. Weed Sci. 48: 281285.Google Scholar
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 260: 231235.CrossRefGoogle ScholarPubMed
Niekamp, J. W., Johnson, W. G., and Smeda, R. J. 1999. Broadleaf weed control with sulfentrazone and flumioxazin in no-tillage soybean (Glycine max). Weed Technol. 13: 233238.CrossRefGoogle Scholar
Padgette, S. R., Kolacz, K. H., and Delannay, X. et al. 1995. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35: 14511461.Google Scholar
Rubin, J. L., Gaines, C. G., and Jensen, R. A. 1982. Enzymological basis for the herbicidal action of glyphosate. Plant Physiol. 70: 833839.Google Scholar
Schuster, C. L. and Smeda, R. J. 2000. Assessment of glyphosate resistance in common waterhemp. Proc. N. Cent. Weed Sci. Soc. 55: 38.Google Scholar
Swantek, J. M., Sneller, C. H., and Oliver, L. R. 1998. Evaluation of soybean injury from sulfentrazone and inheritance of tolerance. Weed Sci. 46: 271277.Google Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol. 12: 315321.Google Scholar
Taylor-Lovell, S., Wax, L. M., and Nelson, R. 2001. Phytoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol. 15: 95102.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49: 703705.CrossRefGoogle Scholar
Vidrine, P. R., Griffin, J. L., Jordan, D. L., and Reynolds, D. B. 1996. Broadleaf weed control in soybean (Glycine max) with sulfentrazone. Weed Technol. 10: 762765.Google Scholar
Wait, J. D., Johnson, W. G., and Massey, R. E. 1999. Weed management with reduced rates of glyphosate in no-till, narrow-row, glyphosate-resistant soybean (Glycine max). Weed Technol. 13: 478483.Google Scholar
Webster, E. P., Bryant, K. J., and Earnest, L. D. 1999. Weed control and economics in nontransgenic and glyphosate-resistant soybean (Glycine max). Weed Technol. 13: 586593.Google Scholar
Wehtje, G. R., Walker, R. W., Grey, T. L., and Hancock, H. G. 1997. Response of purple (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) to selective placement of sulfentrazone. Weed Sci. 45: 382387.CrossRefGoogle Scholar
Witkowski, D. A. and Halling, B. P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90: 12391242.Google Scholar
Wright, T. R., Fuerst, E. P., Ogg, A. G. Jr., Nandihalli, U. B., and Lee, H. J. 1995. Herbicidal activity of UCC-C4243 and acifluorfen is due to inhibition of protoporphyrinogen oxidase. Weed Sci. 43: 4754.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2000. Differential response of common waterhemp (Amaranthus rudis Sauer) to glyphosate in Iowa. Proc. N. Cent. Weed Sci. Soc. 55: 68.Google Scholar