Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T12:18:29.245Z Has data issue: false hasContentIssue false

Soybean Response to Residual and In-Season Treatments of Trifloxysulfuron

Published online by Cambridge University Press:  20 January 2017

Dunk Porterfield
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Wesley J. Everman
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut*
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: [email protected]

Abstract

Experiments were conducted from 1998 to 2000 at Rocky Mount, NC, in weed-free environments to determine soybean tolerance to preplant (PP) applications of trifloxysulfuron and the potential for trifloxysulfuron applied preemergence (PRE) and postemergence (POST) to cotton to injure soybean grown in rotation the following year. Trifloxysulfuron at 3.75 and 7.5 g ai/ha applied PP 2 wk before seeding injured conventional soybean less than 5%, whereas no injury was observed when seeding was delayed 4 or 6 wk after PP treatment. No injury to sulfonylurea-resistant soybean (SR) was observed for any treatment. Soybean yields were not influenced by trifloxysulfuron treatment. Cotton injury was 7% or less with trifloxysulfuron applied PRE or POST at 3.75 and 7.5 g/ha. Trifloxysulfuron at 15 g/ha PRE or POST injured cotton a maximum of 14 to 18%. Trifloxysulfuron did not reduce cotton lint yields regardless of method or rate of application. Both conventional and SR soybean were not injured nor were yields influenced by trifloxysulfuron applied PRE or POST the previous year to cotton.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1998. Guide to Herbicide Injury Symptoms in Cotton. 2nd ed. Hollandale, MN: Agri-Growth. Pp. 2230.Google Scholar
Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA 362622 in cotton (Gossypium hirsutum), peanut (Arachis hypogaea), and selected weeds. Weed Sci. 50:293298.Google Scholar
Barnes, C. J., Goetz, A. J., and Lavey, T. L. 1989. Effects of imazaquin residues on cotton (Gossypium hirsutum). Weed Sci. 37:820824.Google Scholar
Burke, I. C. and Wilcut, J. W. 2004. Weed management in cotton with CGA-362622, fluometuron, and pyrithiobac. Weed Technol. 18:268276.Google Scholar
Corbett, J. L., Askew, S. D., Porterfield, D., and Wilcut, J. W. 2002. Bromoxynil, prometryn, pyrithiobac, and MSMA weed management systems for bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 16:712718.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1997. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 1997. Sicklepod (Senna obtusifolia) management in an ALS-modified soybean (Glycine max). Weed Technol. 11:164170.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. Pp. 251294.Google Scholar
Dotray, P. A., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and devil's-claw (Proboscidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society. pp. 3738.Google Scholar
Harnett, M. E., Chui, L. F., Falco, S. C., Knowlton, S., Mauvis, C. J., and Mazur, B. J. 1993. Molecular characterization of sulfonylurea resistant ALS genes. in Caseley, J. C., Cussans, G. W., and Atkins, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, U.K.: Butterworth-Heneman. Pp. 343353.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993a. Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol. 7:216219.Google Scholar
Jordan, D. L., Johnson, D. H., Johnson, W. G., Kendig, J. A., Frans, R. E., and Talbert, R. E. 1993b. Carryover of DPX-PE350 to grain sorghum (Sorghum bicolor) and soybean (Glycine max) on two Arkansas soils. Weed Technol. 7:645649.Google Scholar
McElroy, J. S., Yelverton, F. H., Burke, I. C., and Wilcut, J. W. 2004a. Absorption, translocation, and metabolism of halosulfuron and trifloxysulfuron in green kyllinga (Kyllinga brevifolia) and false-green kyllinga (K. gracillima). Weed Sci. 52:704710.Google Scholar
McElroy, J. S., Yelverton, F. H., Gannon, T. W., and Wilcut, J. W. 2004b. Foliar vs. soil exposure of green kyllinga (Kyllinga brevifolia) and false-green kyllinga (Kyllinga gracillima) to postemergence treatments of CGA-362622, halosulfuron, imazaquin, and MSMA. Weed Technol. 18:145151.Google Scholar
McElroy, J. S., Yelverton, F. H., Troxler, S. C., and Wilcut, J. W. 2003. Selective exposure of yellow (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) in postemergence treatments of CGA-362622, imazaquin, and MSMA. Weed Technol. 17:554559.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 7:153155.Google Scholar
Medlin, C. R., Shaw, D. R., Arnold, J. C., and Snipes, C. E. 1998. Evaluation of pyrithiobac in SR systems. Proc. South. Weed Sci. Soc. 51:63.Google Scholar
Monks, C. D. and Banks, P. A. 1991. Rotational crop response to chlorimuron, clomazone, and imazaquin applied the previous year. Weed Sci. 39:629633.Google Scholar
Porterfield, D., Fisher, L. R., Wilcut, J. W., and Smith, W. D. 2005. Tobacco (Nicotinia tabacum) response to residual and in-season treatments of CGA-362622. Weed Technol. 19:15.Google Scholar
Porterfield, D. and Wilcut, J. W. 2003. Peanut (Arachis hypogaea) response to residual and in-season treatments of CGA-362622. Weed Technol. 17:441445.Google Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002a. Weed management with trifloxysulfuron, fluometuron, and prometryn in cotton. Weed Sci. 50:438447.Google Scholar
Porterfield, D., Wilcut, J. W., Clewis, S. B., and Edmisten, K. L. 2002b. Weed-free yield response of seven cotton cultivars (Gossypium hirsutum) cultivars to trifloxysulfuron postemergence. Weed Technol. 16:180183.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51:10021009.Google Scholar
Renner, K. A., Meggitt, W. F., and Leavitt, R. A. 1988. Influence of rate, method of application, and tillage on imazaquin persistence in soil. Weed Sci. 36:9095.Google Scholar
Richardson, R. J., Wilson, H. P., Armel, G. R., and Hines, T. E. 2003. Mixtures of CGA 362,622 and bromoxynil for broadleaf weed control in bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 17:496502.Google Scholar
Salisbury, C. D. and Bean, B. W. 1998. Tolerance of imidazolinone resistant corn and sulfonylurea tolerant soybeans to sulfonylurea herbicide residues. Proc. South. Weed Sci. Soc. 51:19.Google Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidormant soybean mutation for resistance to sulfonylurea herbicides. Crop. Sci. 29:14031408.Google Scholar
Sunderland, S. L., Burton, J. D., Coble, H. D., and Maness, E. P. 1995. Physiological mechanism for tall morningglory tolerance to DPX-PE350. Weed Sci. 43:2127.CrossRefGoogle Scholar
Troxler, S. T., Burke, I. C., Wilcut, J. W., Smith, W. D., and Burton, J. 2003. Absorption, translocation, and metabolism of foliar-applied CGA-362622 in purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 51:1318.Google Scholar
Wilcut, J. W. 1998. Influence of pyrithiobac sodium on purple (Cyperus rotundus) and yellow nutsedge (C. esculentus). Weed Sci. 46:111115.Google Scholar
Wilcut, J. W. and Askew, S. D. 1999. Chemical approaches to weed management. in Ruberson, J. R., ed. Handbook of Pest Management. New York: Marcel Dekker. Pp. 627661.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems for oil seed crops. in Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel-Dekker. Pp. 343400.Google Scholar