Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:20:00.884Z Has data issue: false hasContentIssue false

Small Burnet Response to Spring and Fall Postemergence Herbicide Applications

Published online by Cambridge University Press:  20 January 2017

Ryan L. Nelson
Affiliation:
Department of Plant Soils and Climate, Utah State University, Logan, UT 84322
Michael D. Peel*
Affiliation:
USDA, ARS-FRRL, Logan, UT 84322
Corey V. Ransom
Affiliation:
Department of Plant Soils and Climate, Utah State University, Logan, UT 84322
*
Corresponding author's E-mail: [email protected].

Abstract

Small burnet is a hardy, relatively long-lived evergreen forb with the potential to improve grazing lands, particularly to extend grazing into late fall and winter. Small burnet was evaluated for tolerance to spring and fall POST applications of aminopyralid, bromoxynil, clethodim, clopyralid, dicamba, dimethenamid-P, imazamox, metribuzin, pendimethalin, quinclorac, and 2,4-DB. Injury, seed yield, seed viability, and dry matter yield (DMY) were measured in the spring following application. Injury was observed in response to all spring and fall herbicide applications. Injury from aminopyralid was the highest for both spring and fall applications at 24 and 79%, respectively. Fall application of imazamox and dicamba resulted in 57 and 31% injury, respectively. Spring-applied aminopyralid and 2,4-DB both reduced DMY by 16%, whereas fall applications of imazamox, dicamba, and aminopyralid reduced DMY by 36, 12, and 67%, respectively. Fall applications of imazamox and aminopyralid reduced seed yield by 33 and 65%, respectively. Fall-applied aminopyralid reduced seed germination by 43%. None of the spring-applied herbicides affected seed yield or seed germination. Small burnet is severely injured by aminopyralid and to a lesser degree by imazamox and dicamba. Bromoxynil, clethodim, clopyralid, dimethenamid-P, metribuzin, pendimethalin, and quinclorac did not affect small burnet DMY, seed yield, or germination the year after application.

Sanguisorba minor es un arbusto siempre verde de ciclo de vida relativamente largo y resistente a condiciones adversas con el potencial de mejorar tierras para pastoreo, particularmente para extender el período de pastoreo hasta el final del otoño y el invierno. Se evaluó la tolerancia de S. minor a aplicaciones POST en la primavera y el otoño de aminopyralid, bromoxynil, clethodim, clopyralid, dicamba, dimethenamid-P, imazamox, metribuzin, pendimethalin, quinclorac, y 2,4-DB. Se midió el daño, el rendimiento de semilla, la viabilidad de la semilla, y el rendimiento de materia seca (DMY) en la primavera siguiente a la aplicación. Se observó daño en respuesta a todas las aplicaciones hechas en la primavera y en el otoño. El mayor daño fue causado por aminopyralid siendo 24% en las aplicaciones de primavera y 79% en las de otoño. Las aplicaciones de otoño de imazamox y dicamba resultaron en 57 y 31% de daño, respectivamente. Aminopyralid y 2,4-DB aplicados en la primavera redujeron DMY en 16% mientras que las aplicaciones de otoño de imazamox, dicamba y aminopyralid redujeron DMY en 36, 15 y 67%, respectivamente. Las aplicaciones de imazamox y aminopyralid redujeron el rendimiento de semilla en 33 y 65%, respetivamente. Aplicaciones en otoño de aminopyralid redujeron la germinación de la semilla en 43%. Ninguna de los herbicidas aplicados en la primavera afectaron el rendimiento de semilla ni su germinación. S. minor es dañado severamente por aminopyralid en menor grado por imazamox y dicamba. Bromoxynil, clethodim, clopyralid, dimethenamid-P, metribuzin, pendimethalin, y quinclorac no afectaron DMY, el rendimiento de semilla o la germinación de S. minor el año siguiente a la aplicación.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arzani, H, Basiri, M, Khatibi, F, Ghorbani, G (2006) Nutritive value of some Zagros Mountain rangeland species. Small Rum Res 65:128135 Google Scholar
Buckland, SM, Grime, JP, Hodgson, JG, Thompson, K (1997) A comparison of plant responses to the extreme drought of 1995 in northern England. J Ecol 85:875883 Google Scholar
Bukun, B, Gaines, TA, Nissen, SJ, Westra, P, Brunk, G, Shaner, DL, Sleugh, BB, Peterson, VF (2009) Aminopyralid and clopyralid absorption and translocation in Canada thistle (Cirsium arvense). Weed Sci 57:1015 Google Scholar
Carrithers, VF (1997) Using Transline herbicide to control invasive plants. Pages 5964 in Kelly, ME, Wagner, E, Warner, P, eds. Proceedings of Cal-IPC Symposium 1997, Concord, CA. http://www.cal-ipc.org/symposia/archive/pdf/1997_symposium_proceedings1939.pdf. Accessed August 15, 2013Google Scholar
Fryer, JL (2008) Sanguisorba minor . in Fire Effects Information Systems. Fort Collins, CO: USDA, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory http://www.fs.fed.us/database/feis/plants/forb/sanmin/all.html. Accessed August 15, 2013Google Scholar
Goodwin, K, Sheley, RL, Marks, G (2004) Revegetation guidelines for western Montana: Considering invasive weeds Montana Weed Control Association. Pages 73 pGoogle Scholar
Jorgensen, KR, Stevens, R (2004) Seed collection, cleaning, and storage. Pages 699716 in Monsen, SB, Stevens, R, Shaw, NL, comps. Restoring western ranges and wildlands. Gen. Tech. Rep. RMRS-GTR-136-vol. 3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station Google Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS for Mixed Models. 2nd edn. Cary, NC: SAS Institute Google Scholar
Ogle DC (2002a) Small burnet Sanguisorba minor Scop. USDA NRCS Plant Fact Sheet. Boise, ID: USDA NRCS, Idaho State Office and the National Plant Data Center Google Scholar
Ogle DC (2002b) Small burnet Sanguisorba minor Scop. USDA NRCS Plant Guide. Boise, ID: USDA NRCS, Idaho State Office and the National Plant Data Center Google Scholar
Peel, MD, Waldron, BL, Mott, IW (2009) Ploidy determination and agronomic characterization of small burnet germplasm. Crop Sci 49:359366 Google Scholar
Steel, RGD, Torrie, JH, Dickey, DA (1997) Principles and Procedures of Statistics, a Biometrical Approach. 3rd edn. New York: McGraw-Hill Google Scholar
Viano, J, Masotti, V, Gaydou, EM (1999) Nutritional value of Mediterranean sheep's burnet (Sanguisorba minor Ssp. muricata). J Agric Food Chem 47:46454648 Google Scholar
Welch, BL (2004) Nutritive principles in restoration and management. USDA Forest Service General Technical Report 175–186 Google Scholar
Wills, B (2008) Plant integration report—Marlborough SFF project. Central environmental services, Alexandra, Central Otago, New Zealand. http://maxa.maf.govt.nz/sff/about-projects/search/05–132/05-132-plant-integration-report-b-wills-jun08.pdf. Accessed August 15, 2013Google Scholar