Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T19:47:21.845Z Has data issue: false hasContentIssue false

Screening Preemergence and Postemergence Herbicides for Safety in Bioenergy Crops

Published online by Cambridge University Press:  20 January 2017

Larissa L. Smith
Affiliation:
Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
Shawn D. Askew
Affiliation:
Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
Edward S. Hagood Jr.
Affiliation:
Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
Jacob N. Barney*
Affiliation:
Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
*
Corresponding author's E-mail: [email protected].

Abstract

Interest in the cultivation of bioenergy feedstocks has increased the need for information in this rapidly developing sector of agriculture. Many fast-growing, large-statured perennial grasses have been selected because of their high biomass production potential, competitive nature, and ability to tolerate marginal growing conditions. However, weed pressure in the establishment phase can be detrimental to crop yield. Weed control is one of the most costly and resource-intensive aspects of bioenergy crop establishment. Unfortunately, little information exists on practical weed management techniques for the majority of these new crops. The tolerance of switchgrass, big bluestem, reed canarygrass, sorghum, giant reed, eulaliagrass, and giant miscanthus (sterile and seeded) to 22 PRE and 22 POST herbicides were evaluated. Plants were grown in the greenhouse and evaluated for injury, height, and aboveground biomass after 5 or 7 wk for PRE and POST applications, respectively. PRE and POST application of 2,4-D, bentazon, bromoxynil, carfentrazone, dicamba, halosulfuron, and topramezone did not significantly injure any species. Giant miscanthus was more tolerant to PRE herbicides when established from rhizomes compared with seed establishment. Supporting previous research, all eulaliagrass and switchgrass cultivars demonstrated comparable tolerance to PRE application of all 22 herbicides. With the information gained in this study a suite of herbicides may have potential for use in bioenergy crops; however, they should be tested on larger-scale field trials over multiple growing seasons to validate initial findings.

El interés en la producción de cultivos para bioenergía ha incrementado la necesidad de información en este sector de la agricultura de rápido desarrollo. Muchas gramíneas perennes de rápido crecimiento y alta estatura han sido seleccionadas debido a su alto potencial de producción de biomasa, naturaleza competitiva, y habilidad para tolerar condiciones de crecimiento marginales. Sin embargo, la presión de malezas durante la fase de establecimiento puede causar un detrimento del rendimiento del cultivo. El control de malezas es uno de los aspectos más costosos y de altos requerimientos para el establecimiento de cultivos para bioenergía. Desafortunadamente, existe poca información acerca de las técnicas de manejo práctico de malezas para la mayoría de estos nuevos cultivos. Se evaluó la tolerancia de Panicum virgatum, Andropogon gerardii, Phalaris arundinacea, sorgo, Arundo donax, Miscanthus sinensis, y Miscanthus × giganteus (estéril y con semilla) a 22 herbicidas PRE y 22 herbicidas POST. Las plantas fueron crecidas en invernadero y evaluadas por daño, altura, y biomasa del tejido aéreo después de 5 ó 7 semanas para las aplicaciones PRE y POST, respectivamente. La aplicación PRE y POST de 2,4-D, bentazon, bromoxynil, carfentrazone, dicamba, halosulfuron, y topramezone no dañó significativamente ninguna de estas especies. M. × giganteus fue más tolerante a herbicidas PRE cuando fue establecido a partir de rizomas en lugar de semillas. Consistente con investigaciones previas, todos los cultivares de M. sinensis y P. virgatum mostraron una tolerancia comparable entre ellos a la aplicación PRE de todos los 22 herbicidas. Con la información generada en este estudio hay un grupo de herbicidas que pueden tener potencial de uso en cultivos para bioenergía. Sin embargo, estos deben ser evaluados en estudios de campo de mayor escala a lo largo de múltiples temporadas de crecimiento para validar estos resultados iniciales.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, E, Arundale, R, Maughan, M, Oladeinde, A, Wycislo, A, Voigt, T (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2:167183 CrossRefGoogle Scholar
Anderson, EK, Voigt, TB, Bollero, GA, Hager, AG (2010) Miscanthus × giganteus response to preemergence and postemergence herbicides. Weed Technol 24:453460 Google Scholar
Anonymous (2008) Accent® herbicide product label. Wilmington, DE: DuPont Crop Protection 14 pGoogle Scholar
Anonymous (2010a) Harness Xtra® herbicide product label. St. Louis, MO: Monsanto Company 11 pGoogle Scholar
Anonymous (2010b) Paramount® supplemental label. Research Triaingle Park, NC: BASF Corp. 5 pGoogle Scholar
Bahler, CC, Vogel, KP, Moser, LE (1984) Atrazine tolerance in warm-season grass seedlings. Agron J 76:891895 Google Scholar
Barney, JN, DiTomaso, JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? BioScience 58:6470 Google Scholar
Bovey, RW, Hussey, MA (1991) Response of selected forage grasses to herbicides. Agron J 83:709713 Google Scholar
Buhler, DD, Netzer, DA, Riemenschneider, DE, Hartzler, RG (1998) Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy 14:385394 CrossRefGoogle Scholar
Crop Data Management Systems (2014) CDMS Labels Search. http://premier.cdms.net/webapls/. Accessed February 14, 2014Google Scholar
Cherney, JH (2014) Management of Grasses for Biofuel. Ithaca, NY: Cornell University. P 2 Google Scholar
Christian, DG, Haase, E (2001) Agronomy of miscanthus. Pages 2145 in Jones, MB, Walsh, M, eds. Miscanthus For Energy and Fibre. London: James & James Ltd.Google Scholar
Christian, DG, Riche, AB, Yates, NE (1997) Nutrient requirement and cycling in energy crops. Pages 799804 in El Bassam, N, Behl, R K, Prochnow, B, editors. Sustainable Agriculture for Food, Energy and Industry. London: James & James Google Scholar
Curran, WS, Ryan, MR, Myers, MW, Adler, PR (2012) Effects of seeding date and weed control on switchgrass establishment. Weed Technol 26:248255 Google Scholar
Dougherty, RF (2013) Ecology and Niche Characterization of the Invasive Ornamental Grass Miscanthus sinensis . Blacksburg, VA: Virginia Tech. 70 pGoogle Scholar
Dunnett, CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:10961121 Google Scholar
Everman, WJ, Lindsey, AJ, Henry, GM, Glaspie, CF, Phillips, K, McKenney, C (2011) Response of Miscanthus × giganteus and Miscanthus sinensis to postemergence herbicides. Weed Technol 25:398403 Google Scholar
Hintz, RL, Harmoney, KR, Moore, KJ, George, JR, Brummer, EC (1998) Establishment of switchgrass and big bluestem in corn with atrazine. Agron J 90:591596 Google Scholar
Hubbard, J, Whitwell, T (1991) Ornamental grass tolerance to postemergence grass herbicides. HortScience 26:15071509 Google Scholar
[IAPT] International Association for Plant Taxonomy (2012) International Code of Nomenclature for Algae, Fungi, and plants Plants (Melbourne Code). http://www.iapttaxon.org/nomen/main.php?page=h.4&emph=nothospecific. Accessed February 2014Google Scholar
Karp, A, Shield, I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:1532 CrossRefGoogle ScholarPubMed
Kering, MK, Huo, C, Interrante, SM, Hancock, DW, Butler, TJ (2013) Effects of various herbicides on warm-season grass weeds and switchgrass establishment. Crop Sci 53:666673 Google Scholar
Lewandowski, I, Clifton-Brown, JC, Scurlock, JMO, Huisman, W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209227 Google Scholar
Lewandowski, I, Scurlock, JMO, Lindvall, E, Christou, M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335361 CrossRefGoogle Scholar
Masters, RA (1995) Establishment of big bluestem and sand bluestem cultivars with metolachlor and atrazine. Agron J 87:592596 Google Scholar
Miguez, FE, Villamil, MB, Long, SP, Bolero, GA (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148:12821290 CrossRefGoogle Scholar
Mitchell, RB, Vogel, KP, Berdahl, J, Masters, RA (2010) Herbicides for establishing switchgrass in the central and northern Great Plains. Bioenergy Res 3:321327 Google Scholar
Mitskas, MB, Tsolis, CE, Eleftherohorinos, IG, Damalas, CA (2003) Interference between corn and johnsongrass (Sorghum halepense) from seed or rhizome. Weed Sci 51:540545 CrossRefGoogle Scholar
Perlack, RD, Wright, LL, Turhollow, AF, Graham, RL, Stokes, BJ, Erbach, DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. United States Department of Energy, Oak Ridge, TN. 60 pGoogle Scholar
Perrin, R, Vogel, K, Schmer, M, Mitchell, R (2008) Farm-scale production cost of switchgrass for biomass. Bioenergy Res 1:9197 Google Scholar
Robertson, GP, Dale, VH, Doering, OC, Hamburg, SP, Melillo, JM, Wander, WM, Parton, WJ, Adler, PR, Barney, JN, Cruse, RM, Duke, CS, Fearnside, PM, Follett, RF, Gibbs, HK, Gloldemberg, J, Maldenoff, DJ, Ojima, D, Plamer, MW, Sharlpey, A, Wallace, L, Weathers, KC, Weiens, JA, Wilhelm, WW (2008) Sustainable biofuels redux. Science 322:4950 Google Scholar
Sacks, EJ, Jakob, K, Gutterson, NI (2013) High biomass miscanthus varieties. Pages 124 in United States Plant Patent Application Publication. 13/513,173 Google Scholar
Smith, LL, Barney, JN (2014) Contribution of weed management to bioenergy crop yield. Page 196 in 68th Annual Meeting of the Northeastern Weed Science Society. Philadelphia, PA: Northeastern Weed Science Society Google Scholar
[USDA-NRCS] U.S. Department of Agriculture–Natural Resources Conservation Service (2013) Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov. Accessed April 20, 2013Google Scholar
Xiao, L, Grey, T, Blanchett, BH, Lee, RD, Webster, TM, Vencill, WK (2013) Tolerance evaluation of vegetatively established Miscanthus × giganteus to herbicides. Weed Technol 27:735740 Google Scholar
Yan, J, Chen, W, Luo, F, Ma, H, Meng, A, Li, X, Zhu, W, Han, B, Ge, S, Li, J, Sang, T (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Glob Change Biol Bioenergy 4:4960 Google Scholar