Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T03:08:15.140Z Has data issue: false hasContentIssue false

Satellite Remote Sensing to Predict Potential Distribution of Dyers Woad (Isatis tinctoria)

Published online by Cambridge University Press:  12 June 2017

Steven A. Dewey
Affiliation:
Plants Soils and Biometeorology Dep., Utah State Univ., Logan, UT 84322-4820
Kevin P. Price
Affiliation:
Dep. Geogr., Univ. of Kans., Lawrence, KS 66045-2121
Doug Ramsey
Affiliation:
Geogr. Dep., Utah State Univ., Logan, UT 84322-5240

Abstract

Landsat-5 Thematic Mapper spectral data and field survey information were combined to identify specific land cover types associated with 1741 dyers woad infestation points on the Cache National Forest in northern Utah. Ten of 60 possible cover types were strongly associated with current dyers woad infestations, and therefore considered highly suited to establishment and survival of the weed. Non-infested land of the same “highly suited” cover types comprised an additional 24 714 ha within the 149 021-ha study area, suggesting the potential for an eventual 124-fold increase in dyers woad incidence on the forest.

Type
Research
Copyright
Copyright © 1991 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Callihan, R. H., Dewey, S. A., Patton, J. E., and Thill, D. C. 1984. Distribution, biology, and habitat of dyer's woad (Isatis tinctoria) in Idaho. J. Idaho Acad. Sci. 20:1832.Google Scholar
2. Donoghue, D.N.M., and Shennan, I. 1987. A preliminary assessment of Landsat TM imagery for mapping vegetation and sediment distribution in the Wash estuary. Int. J. Remote Sensing 8:11011108.CrossRefGoogle Scholar
3. Everitt, J. H., and Deloach, C. J. 1990. Remote sensing of Chinese tamarisk (Tamarix chinensis) and associated vegetation. Weed Sci. 38: 273278.CrossRefGoogle Scholar
4. Everitt, J. H., Pettit, R. D., and Alaniz, M. A. 1987. Remote sensing of broom snakeweed (Gutierrezia sarothrae) and spiny aster (Aster spinosus). Weed Sci. 35:295302.CrossRefGoogle Scholar
5. Farah, K. O., Tanaka, A. F., and West, N. E. 1988. Autecology and population biology of dyers woad (Isatis tinctoria). Weed Sci. 36: 186193.CrossRefGoogle Scholar
6. Ioka, M., and Koda, M. 1986. Performance of Landsat-5 TM data in land-cover classification. Int. J. Remote Sensing 7:17151728.CrossRefGoogle Scholar
7. King, L. J. 1967. The distribution of woad (Isatis tinctoria L., Cruciferae) in North America. Proc. Northeast Weed Control Conf., 21: 589593.Google Scholar
8. Koopmans, L. H. 1987. Introduction to Contemporary Statistical Methods, 2nd ed. Duxbury Press, Boston. 615 p.Google Scholar
9. Menges, R. M., Nixon, P. R., and Richardson, A. J. 1985. Light reflectance and remote sensing of weeds in agronomic and horticultural crops. Weed Sci. 33:569581.CrossRefGoogle Scholar
10. Moody, M. E., and Mack, R. N. 1988. Controlling the spread of plant invasions: the importance of nascent foci. J. Appl. Ecol. 25:10091021.CrossRefGoogle Scholar
11. Mooney, H. A., and Drake, J. A., eds. 1986. Ecology of Biological Invasions of North America and Hawaii. Springer-Verlag, New York, NY. 321 p.CrossRefGoogle Scholar
12. Shasby, M., and Carneggie, D. 1986. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data. Photogram. Eng. and Remote Sensing 52:779786.Google Scholar
13. Talbot, S. S., and Markon, C. J. 1986. Vegetation mapping of Nowitna National Wildlife Refuge, Alaska, using Landsat MSS digital data. Photogram. Eng. and Remote Sensing 52:791799.Google Scholar
14. Timmons, S. M., Clarkson, B. D., Shaw, W. B., and Atkinson, I.A.E. 1984. Mapping native vegetation using Landsat data. N.Z.J. Sci. 27:389397.Google Scholar
15. United States Department of Agriculture. 1986. Intermountain Region Noxious Weed and Poisonous Plant Control Program Environmental Impact Statement. USDA, Forest Service, Intermountain Region, Ogden, UT. 489 p.Google Scholar
16. United States Department of Interior. 1985. Northwest Area Noxious Weed Control Program Environmental Impact Statement. USDI, Bureau of Land Management, Oregon State Office, Portland, OR. 295 p.Google Scholar
17. Varga, W. A., and Evans, J. O. 1978. Dyer's woad: from cultivated to curse. Utah Sci. 39:8790.Google Scholar
18. West, N. E., and Farah, K. O. 1989. Effects of clipping and sheep grazing on dyers woad. J. Range Manage. 42:510.CrossRefGoogle Scholar
19. Young, J. A., and Evans, R. A. 1971. Germination of dyers woad. Weed Sci. 19:7678.CrossRefGoogle Scholar