Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T01:24:33.076Z Has data issue: false hasContentIssue false

Safening of Native Grass to Herbicides by Using Carbon Bands

Published online by Cambridge University Press:  20 January 2017

W. James Grichar*
Affiliation:
Texas AgriLife Research, Beeville, TX 78102
John Lloyd-Reilley
Affiliation:
U.S. Department of Agriculture Natural Resources Conservation Service, Kika de la Garza Plant Materials Center, Kingsville, TX 78363
Jeff Rahmes
Affiliation:
Texas AgriLife Research, Beeville, TX 78102
W. R. Ocumpaugh
Affiliation:
Texas AgriLife Research, Beeville, TX 78102
Jamie L. Foster
Affiliation:
Texas AgriLife Research, Beeville, TX 78102
*
Corresponding author's E-mail: [email protected]

Abstract

Greenhouse and field experiments were conducted to evaluate the use of a carbon band to provide a “safe zone” for seedling emergence and growth of three native grass species. ‘KIKA677’ streambed bristlegrass germplasm, ‘Alamo’ switchgrass, and ‘Waelder’ shortspike windmillgrass germplasm were used in combination with several PRE- and POST-applied herbicides including cloransulam, flumioxazin, imazapic, imazethapyr, and 2,4-D. In a greenhouse experiment, switchgrass emergence was improved when a carbon band was used with imazapic or imazethapyr at 0.04 and 0.07 kg ai ha−1 or 2,4-D at 2.12 kg ae ha−1. Windmillgrass emergence was improved when carbon was used in combination with flumioxazin at 0.05 and 0.1 kg ai ha−1, imazapic at 0.04 and 0.07 kg ha−1, imazethapyr at 0.07 kg ha−1, and 2,4-D at 1.06 kg ha−1, whereas bristlegrass emergence was improved when carbon was used in combination with flumioxazin at 0.1 kg ai ha−1, imazapic at both rates, and imazethapyr at 0.04 kg ha−1. Field studies indicated that flumioxazin at 0.05 and 0.1 kg ha−1, imazapic at 0.04 kg ha−1, and imazethapyr at 0.04 and 0.07 kg ha−1, were safened for bristlegrass and switchgrass emergence when used with carbon. Windmillgrass emergence and growth were improved when carbon was used in combination with flumioxazin at 0.1 kg ha−1.

Se realizaron experimentos de invernadero y de campo para evaluar el uso de una banda de carbón activado para propiciar una ‘zona segura’ para la emergencia de plántulas y el crecimiento de tres especies de zacate nativas. El germoplasma ‘KIKA677’ de Setaria leucopila, ‘Alamo’ de Panicum virgatum, y ‘Waelder’ de Chloris subdolichostachya fueron usados en combinación con varios herbicidas aplicados PRE y POST incluyendo cloransulam, flumioxazin, imazapic, imazethapyr y 2,4-D. En un experimento de invernadero, la emergencia de P. virgatum mejoró cuando se usó una banda de carbón con imazapic o imazethapyr a 0.04 y 0.07 kg ha−1 o 2,4-D a 2.12 kg ha−1. La emergencia de C. subdolichostachya fue mejorada cuando se usó carbón en combinación con flumioxazin a 0.05 y 0.1 kg ha−1, imazapic a 0.04 y 0.07 kg ha−1, imazethapyr a 0.07 kg ha−1 y 2,4-D a 1.06 kg ha−1; mientras la emergencia de S. leucopila mejoró cuando se usó carbón en combinación con flumioxazin a 0.1 kg ha−1, imazapic a ambas dosis e imazethapyr a 0.04 kg ha−1. Estudios de campo indicaron que flumioxazin a 0.05 y 0.1 kg ha−1, imazapic a 0.04 kg ha−1 e imazethapyr a 0.04 y 0.07 kg ha−1 fueron seguros para la emergencia de S. leucopila y P. virgatum cuando se usaron con carbón. La emergencia y crecimiento de C. subdolichostachya mejoraron cuando el carbón fue usado en combinación con flumioxazin a 0.1 kg ha−1.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, S. M., Clay, S. A., Wrage, L. J., and Matthees, D. 2004. Soybean foliage residues of dicamba and 2,4-D and correlation to application rates and yield. Agron. J. 96:750760.Google Scholar
Askew, S. D., Wilcut, J. W., and Langston, V. B. 1999. Weed management in soybean (Glycine max) with preplant-incorporated herbicides and cloransulam. Weed Technol. 13:276282.Google Scholar
Barnes, J. W. and Oliver, L. R. 2004. Preemergence weed control in soybean with cloransulam. Weed Technol. 18:10771090.Google Scholar
Beran, D. D., Masters, R. A., and Gaussoin, R. E. 1999. Establishment of grassland legumes with imazethapyr and imazapic. Agron. J. 91:592596.Google Scholar
Beran, D. D., Masters, R. A., Gaussoin, R. F., and Rivas-Pantoja, F. 2000. Establishment of big bluestem and Illinois bundleflower mixtures with imazapic and imazethapyr. Agron. J. 92:460465.Google Scholar
Betz, R. F. 1986. One decade of research in prairie restoration at the Fermi National Acclerator Laboratory (Fermilab), Batavia, Ill. Pages 179185 in Clambey, G. K. and Pemble, R. H., eds. Proceedings of the Ninth North American Prairie Conference. Moorhead, MN Tri-College Univ. Centre for Environmental Studies.Google Scholar
Burr, R. J., Lee, W. O., and Appleby, A. P. 1972. Factors affecting the use of activated carbon to improve herbicide selectivity. Weed Sci. 20:180183.Google Scholar
Cole, T. A., Wehtje, G. R., Wilcut, J. W., and Hicks, T. V. 1989. Behavior of imazethapyr in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:639644.Google Scholar
Correl, D. S. and Johnson, M. C. 1996. Manual of the Vascular Plants of Texas. 4th ed. Richardson, TX University of Texas Press. Pp. 238242.Google Scholar
Culpepper, A. S., Gimenez, A. E., York, A. C., Batts, R. B., and Wilcut, J. W. 2001. Morningglory (Ipomoea spp.) and large crabgrass (Digitaria sanguinalis) control with glyphosate and 2,4-D mixtures in glyphosate-resistant soybeans (Glycine max). Weed Technol. 15:5661.Google Scholar
Darris, D. C., Lambert, S. M., and Young, W. C. III. 1996. Seed production of blue wildrye. Plant Materials Tech. Note No. 17. http://depts.washington.edu/proplnt?Plants/Blue%20wildrye.htm. Accessed April 11, 2012.Google Scholar
Fishel, F. M. 1996. Activated charcoal for pesticide inactivation. Fact Sheet ENH-88. Gainesville, FL Environmental Horticulture Department, University of Florida. 3 p.Google Scholar
Franey, R. J. and Hart, S. E. 1999. Time of application of cloransulam for giant ragweed (Ambrosia trifida) control in soybean (Glycine max). Weed Technol. 13:825828.Google Scholar
Gould, F. W. 1975. The Grasses of Texas. College Station, TX Texas A&M University Press. 324 p.Google Scholar
Grichar, W. J. 1997. Control of Palmer amaranth (Amaranthus palmeri) in peanut (Arachis hypogaea) with postemergence herbicides. Weed Technol. 11:739743.Google Scholar
Grichar, W. J. and Colburn, A. E. 1996. Flumioxazin for weed control in Texas peanuts (Arachis hypogaea L.). Peanut Sci. 23:3036.Google Scholar
Grichar, W. J. and Nester, P. R. 1997. Nutsedge (Cyperus spp.) control in peanut (Arachis hypogaea) with AC 263,222 and imazethapyr. Weed Technol. 11:714719.Google Scholar
Grichar, W. J., Nester, P. R., and Colburn, A. E. 1992. Nutsedge (Cyperus spp.) control in peanuts (Arachis hypogaea) with imazethapyr. Weed Technol. 6:396400.Google Scholar
Grey, T. L., Bridges, D. C., Prostko, E. P., Eastin, E. F., Johnson, W. C. III, Vencil, W. K., Brecke, B. J., MacDonald, G. E., Tredaway Ducar, J. A., Everest, J. W., Wehtje, G. R., and Wilcut, J. W. 2003. Residual weed control with imazapic, diclosulam, and flumioxazin in southeastern peanut (Arachis hypogaea). Peanut Sci. 30:2227.Google Scholar
Hassler, J. W. 1963. Activated Carbon. New York Chemical. 426 p.Google Scholar
Hutto, K. C., Coats, G. E., and Taylor, J. M. 2000. Evaluation of imazapic rate and tank-mixes for weed control on roadsides. Proc. South. Weed Sci. Soc. 53:131.Google Scholar
Jordan, W. R., Peters, R. L., and Allen, E. B. 1988. Ecological restoration as a strategy for conserving biological diversity. Environ. Manag. 12:5572.Google Scholar
Kay, B. L. 1972. Increasing herbicide selectivity on rangeland with activated charcoal. Proc. Annu. Calif. Weed Conf. 24:122125.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1998. Sulfentrazone for weed control in soybean (Glycine max). Weed Technol. 12:684689.Google Scholar
Lee, W. O. 1973. Clean grass seed crops established with activated carbon bands and herbicides. Weed Sci. 21:537541.Google Scholar
Linscott, D. L. and Hagin, R. D. 1967. Protecting alfalfa seedlings from a triazine with activated charcoal. Weeds 15:304306.Google Scholar
Masters, R. A., Nissen, S. J., Gaussoin, R. E., Beran, D. D., and Stougaard, R. N. 1996. Imidazolinone herbicides improve restoration of Great Plains grasslands. Weed Technol. 10:392403.Google Scholar
Mlot, C. 1990. Restoring the prairie. BioScience 40:804809.Google Scholar
Oliver, L. R., Gander, J. R., and Barrentine, J. L. 1997. Morningglory spectrum for cloransulam (First Rate). Weed Sci. Soc. Am. Abstr. 37:2.Google Scholar
Reddy, K. N. 2000. Weed control in soybean (Glycine max) with cloransulam and diclosulam. Weed Technol. 14:293297.Google Scholar
Richburg, J. S. III, Wilcut, J. W., Colvin, D. L., and Wiley, G. R. 1996. Weed management in southeastern peanut (Arachis hypogaea) with AC 263,222. Weed Technol. 10:145152.Google Scholar
Richburg, J. S. III, Wilcut, J. W., and Wehtje, G. R. 1993. Toxicity of foliar and/or soils applied AC 263,222 to purple (Cyperus rotundus) and yellow nutsedge (C. esculentus) . Weed Sci. 42:398402.Google Scholar
Rolston, M. P., Lee, W. O., and Appleby, A. P. 1979a. Volunteer legume control in legume seed crops with carbon bands and herbicides. I. White clover. Agron. J. 71:665670.Google Scholar
Rolston, M. P., Lee, W. O., and Appleby, A. P. 1979b. Volunteer legume control in legume seed crops with carbon bands and herbicides. II. Red clover and alfalfa. Agron. J. 71:671675.Google Scholar
Schramm, P. 1992. Prairie restoration: a twenty-five year perspective on establishment and management. Pages 169177 in Smith, D. D. and Jacobs, C. A., eds. Proceedings of the 12th North American Prairie Conf. Cedar Falls, IA University of Northern Iowa Press.Google Scholar
Scott, G. H., Askew, S. D., and Wilcut, J. W. 2001. Economic evaluation of diclosulam and flumioxazin systems in peanut (Arachis hypogaea). Weed Technol. 15:360364.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Champaign, IL Weed Science Society of America. 458 p.Google Scholar
Shirley, S. 1994. Restoring the Tallgrass Prairie. Iowa City University of Iowa Press. 330 p.Google Scholar
Smisek, M. and Cerny, S. 1970. Activated Carbon. Manufacture, Properties and Applications. Amsterdam Elsevier. 479 p.Google Scholar
Smith, D. D. 1992. Tallgrass prairie settlement: prelude to demise of the tallgrass ecosystem. Pages 195199 in Smith, D. D. and Jacobs, C. A., eds. Proceedings of the 12th North American Prairie Conference. Cedar Falls, IA University of Northern Iowa Press.Google Scholar
Vidrine, P. R., Miller, D. K., Griffin, J. L., and Caylor, J. P. 2000. Utility of Firstrate (cloransulam-methyl) in soybean weed control programs. Proc. South. Weed Sci. Soc. 53:236237.Google Scholar
Wilcut, J. W., Richburg, J. S. III, Wiley, G., Walls, F. R. Jr., Jones, S. R., and Iverson, M. J. 1994. Imidazolinone herbicide systems for peanut (Arachis hypogaea L.). Peanut Sci. 21:2328.Google Scholar
Wilcut, J. W., Walls, F. R. Jr., and Horton, D. N. 1991. Weed control, yield and net returns using imazethapyr in peanuts (Arachis hypogaea). Weed Sci. 39:238242.Google Scholar
Wilcut, J. W., York, A. C., Grichar, W. J., and Wehtje, G. R. 1995. The biology and management of weeds in peanut (Arachis hypogaea). Pages 207244 in Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK American Peanut Research Education Society.Google Scholar