Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T19:16:51.771Z Has data issue: false hasContentIssue false

Potential Damage to Sensitive Landscape Plants from Wood Chips of Aminocyclopyrachlor Damaged Trees

Published online by Cambridge University Press:  20 January 2017

Aaron J. Patton*
Affiliation:
Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054
Gail E. Ruhl
Affiliation:
Plant and Pest Diagnostic Laboratory, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054
Tom C. Creswell
Affiliation:
Plant and Pest Diagnostic Laboratory, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054
Ping Wan
Affiliation:
Office of Indiana State Chemist, Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
David E. Scott
Affiliation:
Office of Indiana State Chemist, Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
Joe D. Becovitz
Affiliation:
Office of Indiana State Chemist, Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
Daniel V. Weisenberger
Affiliation:
Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054
*
Corresponding author's E-mail: [email protected]

Abstract

Applications of aminocyclopyrachlor in 2011 to turf resulted in brown and twisted shoots, leaves, and needles; shoot dieback; and in some cases, death of trees and ornamental plants adjacent to treated turf areas. Our research objective was to determine if a sensitive plant could be injured from wood chips (mulch) obtained from aminocyclopyrachlor-damaged trees, and to quantify movement of aminocyclopyrachlor from contaminated wood chips into soil and its subsequent uptake by roots into landscape plant tissues. Tomatoes were grown under greenhouse conditions and mulched with chipped tree branches collected from honey locust and Norway spruce damaged 12 mo previously by aminocyclopyrachlor. Analysis of tomato tissue for aminocyclopyrachlor residues 32 d after mulching found aminocyclopyrachlor in all mulched tomato plants, which was consistent with observations of epinasty on tomato leaflets. Aminocyclopyrachlor residues ranged from 0.5 to 8.0 ppb in tomato plants while chipped tree branches contained 1.7 to 14.7 ppb. Aminocyclopyrachlor residues in the potting soil below the mulch ranged from below the quantifiable limit to 0.63 ppb, indicating that aminocyclopyrachlor can leach from wood chips into soil, causing plant injury. These results indicate that trees damaged by aminocyclopyrachlor should not be chipped and used for mulch or as an ingredient in compost.

En 2011, aplicaciones de aminocyclopyrachlor en céspedes resultó en tejido aéreo y hojas café y enrolladas, muerte del tejido aéreo, y en algunos casos, la muerte de árboles y plantas ornamentales adyacentes a las áreas tratadas en el césped. El objetivo de nuestra investigación fue determinar si una planta sensible podría ser dañada por una cobertura de chips de madera (mulch) que se obtuvo a partir de árboles dañados con aminocyclopyrachlor, y cuantificar el movimiento de aminocyclopyrachlor desde chips de madera hacia el suelo y su subsiguiente absorción por las raíces de plantas presentes en el paisaje. Plantas de tomate fueron crecidas en invernadero y con cobertura de chips hecha a partir de ramas colectadas de árboles de Gleditsia triacanthos y Picea abies dañados 12 meses antes con aminocyclopyrachlor. El análisis de aminocyclopyrachlor en el tejido de tomate 32 d después de poner la cobertura encontró aminocyclopyrachlor en todas las plantas de tomate con cobertura, lo cual fue consistente con observaciones de epinastia en las hojas de tomate. Los residuos de aminocyclopyrachlor variaron entre 0.5 y 8.0 ppb en plantas de tomate mientras que en las ramas de los árboles fue de 1.7 a 14.7 ppb. Los residuos de aminocyclopyrachlor en la mezcla de suelo de las macetas debajo de la cobertura varió desde niveles por debajo del límite de cuantificación a 0.63 ppb, indicando que aminocyclopyrachlor puede lixiviarse desde los chips de madera al suelo, causando daño en las plantas. Estos resultados indican que árboles dañados con aminocyclopyrachlor no deberían ser usados para producir coberturas o como ingrediente en compost.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010. Imprelis herbicide label. E. I. du Pont de Nemours and Company, Wilmington, DE 19898.Google Scholar
Anonymous, 2011. Minnesota Department of Agriculture, Laboratory Service Division, Document No. EA-WI-003, “Work Instructions for Aminocyclopyrachlor in Soil”. P. 13.Google Scholar
Anonymous. 2012. 2012 Imprelis soil and vegetation sampling and analysis follow up study. Office of Indiana State Chemist and Seed Commissioner. West Lafayette, IN. http://www.isco.purdue.edu/pesticide/pest_pdf/imprelis_2012_soil_and_vegetation_sampling_report.pdf. Accessed January 17, 2013.Google Scholar
Anonymous. 2013a. Facts about the claim resolution process. E. I. du Pont de Nemours and Company, Wilmington, DE. http://imprelis-facts.com/category/about-claims-resolution/ (accessed 22 January 2013).Google Scholar
Anonymous. 2013b. Streamline herbicide label. E. I. du Pont de Nemours and Company, Wilmington, DE 19898.Google Scholar
Anonymous. 2013c. Perspective herbicide label. E. I. du Pont de Nemours and Company, Wilmington, DE 19898.Google Scholar
Anonymous. 2013d. Viewpoint herbicide label. E. I. du Pont de Nemours and Company, Wilmington, DE 19898.Google Scholar
Bell, J. L., Burke, I. C., and Prather, T. S. 2011. Uptake, translocation and metabolism of aminocyclopyrachlor in prickly lettuce, rush skeletonweed and yellow starthistle. Pest. Manag. Sci. 67:13381348.Google Scholar
Branham, B. E. and Lickfeldt, D. W. 1997. Effect of pesticide-treated grass clippings used as a mulch on ornamental plants. HortScience. 32:12161219.Google Scholar
Busey, P, Broschat, T. K., and Johnston, D. L. 2003. Injury to landscape and vegetable plants by volatile turf herbicides. HortTechnology. 13:650653.Google Scholar
Conklin, K. L. and Lym, R. 2013. Effect of temperature and moisture on aminocyclopyrachlor soil half-life. Weed Technol. 27:552556.Google Scholar
DuPont Professional Products. 2011. 17 Jun 2011 Letter to Imprelis Customers. http://www2.dupont.com/Professional_Products/en_US/assets/downloads/pdfs/Letter_to_Imprelis_Customers_061711.pdf. Accessed July 10, 2013).Google Scholar
Fagliari, J. R., Oliveira, R. S., and Constantin, J. 2005. Impact of sublethal doses of 2, 4–D, simulating drift, on tomato yield. J. Envron. Sci. and Health. B40:201206. DOI:.Google Scholar
Ferdas, A. 2011. Federal Insecticide, Fungicide, and Rodenticide Act, Stop Sale, Use, or removal Order, docket no. FIFRA-03-2011-0277SS. http://www.epa.gov/pesticides/regulating/imprelis-stopsale-letter.pdf. Accessed January 16, 2013.Google Scholar
Flessner, M. L., McElroy, J. S., Cardoso, L. A., and Martins, D. 2012. Simulated spray drift of aminocyclopyrachlor on cantaloupe, eggplant, and cotton. Weed Technol. 26:724730.CrossRefGoogle Scholar
Gannon, T. W., Yelverton, F. H., Warren, L. S., and Silcox, C. A. 2009. Broadleaf weed control with aminocyclopyrachlor (DPX-KJM44) in fine turf. Proc. South. Weed Sci. Soc. 62:394.Google Scholar
Gomez De Barreda, D., Lorenzo, E., Carbonell, E. A., Cases, B., and Muñoz, N. 1993. Use of tomato (Lycopersicon esculentum) seedlings to detect bensulfuron and quinclorac residues in water. Weed Technol. 7:376381.Google Scholar
Lindenmayer, R. B., Niseen, S. J., Westra, P. P., Shaner, D. L., and Brunk, G. 2013. Aminocyclopyrachlor absorption, translocation, and metabolism in field bindweed (Convolulus arvensis). Weed Sci. 61:6367.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron J. 75:153155.Google Scholar
Monaco, T. J., Weller, S. C., and Ashton, F. M. 2002. Weed Science: Principles & Practices. New York J. Wiley. p. 586.Google Scholar
Nanita, S. C., Pentz, A. M., Grant, J., Vogl, E., Devine, T. J., and Henze, R. M. 2009. Mass spectrometric assessment and analytical methods for quantification of the new herbicide aminocyclopyrachlor and its methyl analogue in soil and water. Anal. Chem. 81:797808.Google Scholar
Oliveira, R. S. Jr., Alonso, D. G., and Koskinen, W. C. 2011. Sorption – Desorption of aminocyclopyrachlor in selected Brazilian soils. J. Agric. Food Chem. 59:40454050.Google Scholar
Patton, A., Creswell, T., Ruhl, G., and Weller, S. 2011. A Turf Professionals Guide to Suspected Imprelis Herbicide Injury in the Landscape. Purdue University Plant & Pest Diagnostic Laboratory publication. http://www.ppdl.purdue.edu/PPDL/pubs/briefs/ImprelisLCO.pdf. Accessed January 16, 2013.Google Scholar
Patton, A., Creswell, T., Ruhl, G., and Weller, S. 2012a. Imprelis Update: 2012 Field Notes on Injury and Recovery. Purdue University Plant & Pest Diagnostic Laboratory publication. http://www.ppdl.purdue.edu/PPDL/pubs/briefs/ImprelisUpdate2012.pdf. Accessed January 16, 2013.Google Scholar
Patton, A. J., Weisenberger, D. V., Brosnan, J. T., and Breeden, G. 2012b. Herbicide selection in spring or fall influences ground ivy control. ASA, CSSA and SSSA Annual Meetings, Cincinnati, OH.Google Scholar
Ruhl, G. E. 2012. Imprelis Herbicide Injury: 2011 PPDL Host List. Purdue Plant and Pest Diagnostic Laboratory. http://www.ppdl.purdue.edu/ppdl/weeklypics/1-17-12.html. Accessed January 16, 2013.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings 23rd SAS Users Group Intl., SAS Institute, Cary, NC. Nashville, TN, March 22–25.Google Scholar
Strachan, S. D., Casini, M. S., Heldreth, K. M., Scocas, J. A., Nissen, S. J., Bukun, B., Lindenmayer, R. B., Shaner, D. L., Westra, P., and Brunk, G. 2010. Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci. 58:103108.CrossRefGoogle Scholar
Strachan, S. D., Nanita, S. C., Ruggiero, M., Casini, M. S., Heldreth, K. M., Hageman, L. H., Flanigan, H., Ferry, N. M., and Pentz, A. M. 2011. Correlation of chemical analysis of residual levels of aminocyclopyrachlor in soil to biological responses of alfalfa, cotton, soybean, and sunflower. Weed Technol. 25:239244.Google Scholar
Turner, R. G., Claus, J. S., Hidalgo, E., Holliday, M. J., and Armel, G. R. 2009. Technical introduction of the new DuPont vegetation management herbicide aminocyclopyrachlor. Abstract no. 405. Proceedings of the Weed Sci. Soc. of America. Orlando, FL.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2010. Registration of the New Active Ingredient Aminocyclopyrachlor for Use on Non-Crop Areas, Sod Farms, Turf, and Residential Lawns. Washington, DC Office of Pesticide Programs, Registration Division. p. 123.Google Scholar
Vandervoort, C., Zabik, M. J., Branham, B., and Lickfeldt, D. W. 1997. Fate of selected pesticides applied to turfgrass: effect of composting on residues. B. Environ. Contam. Tox. 58:3845.Google Scholar