Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T07:59:18.801Z Has data issue: false hasContentIssue false

Persistence and Carryover Effect of Imazapic and Imazapyr in Brazilian Cropping Systems

Published online by Cambridge University Press:  20 January 2017

Adolfo V. Ulbrich
Affiliation:
Department at Londrina State University, Londrina, PR, Brazil
J. Roberto P. Souza
Affiliation:
Department at Londrina State University, Londrina, PR, Brazil
Dale Shaner*
Affiliation:
Water Management Unit, USDA-ARS, Fort Collins, CO 80526
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in 1999 to 2000 on a clay soil and a sandy-loam soil in Londrina and Palmeira, PR, Brazil, respectively, to determine the persistence and carryover effect of a mixture of imazapic and imazapyr, applied to imidazolinone-tolerant corn, on rotational crops of soybean, edible bean, wheat, and corn in two different planting systems (no till and tillage). Main plots were herbicide treatments (0, 52.5 + 17.5, and 105 + 35 g ai/ha for imazapic and imazapyr, respectively) and subplots were five intervals (0, 30, 60, 90, and 120 d) between the herbicide application and rotational crop planting. Soil samples were collected for a cucumber bioassay and chemical residues analysis at each time interval. The dissipation time (DT50) of the herbicides in the soil was greater in Londrina than Palmeira, for both imazapic (54 d vs. 27 d, respectively) and imazapyr (40 d vs. 33 d, respectively), probably due to the lower pH and greater clay content of the soil in Londrina compared with Palmeira. The DT50 for both herbicides tended to increase slightly in no-till compared with conventional tillage but the differences were not great. Soybean was the least sensitive rotational crop, with a period for no yield drag (PINYD) of 87 d in Londrina and 88 d in Palmeira. Wheat and edible bean showed intermediate sensitivity. The PINYD for wheat and edible bean was 99 and 98 d for Londrina and 91 and 97 d for Palmeira, respectively. Corn was the most sensitive, with a PINYD of 117 d in Londrina and 97 d in Palmeira. Cucumber was more sensitive to imazapic and imazapyr residues than the rotational crops and should be an effective bioassay to indicate when rotational crops can be safely planted.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almeida, J. C. V., Leite, C. R. F., and Ulbrich, A. V. 2002. Controle de Cyperus rotundus na cultura do milho Clearfield com o herbicida Onduty (imazapic+imazapyr). In XXIII Congresso Brasileiro da Ciência das Plantas Daninhas. Gramado, RS. Sociedade Brasileira de Controle das Plantas Daninhas. 217 p.Google Scholar
Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31:994.Google Scholar
Beardmore, R. A., Hart, R., Iverson, R., Risley, M. A., and Trimmer, M. 1991. Imazapyr herbicide. in Shaner, D. L. and O´Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC. Pp. 211227.Google Scholar
Bovey, R. W. and Senseman, S. A. 1998. Response of food and forage crops to soil-applied imazapyr. Weed Sci. 46:614617.Google Scholar
Bresnahan, G., Dexter, A., Koskinen, W., and Lueschen, W. 2002. Influence of soil pH-sorption interactions on the carry-over of fresh and aged soil residues of imazamox. Weed Res. 42:4551.Google Scholar
Cobucci, T., Prates, H. T., and Falcão, C. L. M. 1998. Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci. 46:258263.Google Scholar
Coffman, C. B., Frank, J. R., and Potts, W. E. 1993. Crop responses to hexazinone, imazapyr, tebuthiuron and triclopyr. Weed Technol. 7:140145.Google Scholar
Fogg, P. and Boxall, A. B. 2003. Degradation of pesticides in biobeds: the effect of concentration and pesticide mixtures. J. Agric. Food Chem. 51:53445349.Google Scholar
Gonçalves, A. H., Silva, J. B., and Lunkes, J. A. 2001. Control of purple nutsedge (Cyperus rotundus) and residual effect on dry beans crop of the herbicide imazapyr. Planta Daninha 18:435443.Google Scholar
Leite, C. R. F., Almeida, J. C. V., and Prete, C. E. 1998. Aspectos fisiológicos, bioquímicos e agronômicos dos herbicidas inibidores da enzima ALS (AHAS) eds. Londrina, PR, Brazil. P. 68.Google Scholar
Loux, M. M., Liebl, R. A., and Slife, F. W. 1989. Adsorption of imazapyr and imazethapyr on soils, sediments, and selected adsorbents. Weed Sci. 37:712718.Google Scholar
Loux, M. M. and Reese, K. D. 1993. Effect of soil type and pH on persistence and carryover of imidazolinone herbicides. Weed Technol. 7:452458.Google Scholar
Mangels, G. 1991. Behavior of the imidazolinone herbicides in soil—a review of the literature. in Shaner, D. L. and O'Conner, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC. Pp. 191209.Google Scholar
Michael, J. L. and Neary, D. G. 1993. Herbicide dissipation studies in southern forest ecosystems. Environ. Sci. Chem. 12:405410.Google Scholar
Richburg, J. S. III, Wilcut, J. W., Colvin, D. L., and Wiley, G. R. 1996. Weed management in southeastern peanut (Arachis hypogaea) with AC 263,222. Weed Technol. 10:145152.Google Scholar
Riley, D. G. and Shaw, D. R. 1988. Influence of imazapyr on control of pitted morningglory (Ipomoea lacunosa) and Johnsongrass (Sorghum halepense) with chlorimuron, imazaquin and imazaethapyr. Weed Sci. 36:663666.Google Scholar
Rodrigues, B. N. 1993. Influência da cobertura morta no comportamento dos herbicidas imazaquin e clomazone. Planta Daninha 11:2128.Google Scholar
Rodrigues, B. N. and Almeida, F. S. 1998. Guia de Herbicidas 4. ed. Londrina, Brazil: Edição dos autores. 648 p.Google Scholar
Rodrigues, B. N., Lima, J., Yada, I. F. U., Ulbrich, A. V., and Fornaroli, D. A. 2000. Influência da coborta morta na retencão do imazaquin em plantio direto de soja. Planta Daninha 18:231239.Google Scholar
Shaner, D. L., Bascomb, N. F., and Smith, W. 1996. Imidazolinone-resistant crops: selection, characterization, and management. in Duke, S. O., ed. Herbicide Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC. Pp. 143159.Google Scholar
Stougaard, R. N., Shea, P. J., and Martin, A. T. 1990. Effects of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Sci. 38:6773.Google Scholar
Ulbrich, A. V., Rodrigues, B. N., and Lima, J. 1998. Efeito residual dos herbicidas imazaquin e imazethapyr, aplicados na soja, sobre o milho safrinha. Planta Daninha 16:137147.Google Scholar
Vencill, W. K. ed. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. pp. 249, 251.Google Scholar
Wehtje, G., Dickens, R., Wilcut, J. W., and Hajek, B. F. 1987. Sorption and mobility of sulfometuron and imazapyr in five Alabama soils. Weed Sci. 35:858863.Google Scholar
Wilcut, J. W., Richburg, J. S., Wiley, G., and Wixson, M. 1994. Tank-mixtures with AC 262,222 for weed management in southeastern imidazolinone tolerant corn. Proc. Weed Sci. Soc. Am. Abstr. 34:6.Google Scholar
Wixson, M. B. and Shaw, D. R. 1992. Effects of soil-applied AC263,222 on crop rotated with soybean (Glycine max). Weed Technol. 6:276279.Google Scholar