Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:19:46.076Z Has data issue: false hasContentIssue false

Implements and Cultivation Frequency to Improve In-Row Weed Control in Organic Peanut Production

Published online by Cambridge University Press:  20 January 2017

W. Carroll Johnson III*
Affiliation:
USDA-ARS, Tifton Campus, P.O. Box 748, Tifton, GA 31793-0748
Mark A. Boudreau
Affiliation:
Department of Biology and Agricultural Engineering, University of Georgia, Athens, GA 30602
Jerry W. Davis
Affiliation:
University of Georgia, Griffin Campus, Griffin, GA 30223
*
Corresponding author's E-mail: [email protected]

Abstract

Weed control in organic peanut production is difficult and costly. Sweep cultivation in the row middles is effective, but weeds remain in the crop row, causing yield loss. Research trials were conducted in Ty Ty, GA to evaluate implements and frequencies of cultivation to improve in-row weed control in organic peanut. Implements were a tine weeder and power takeoff-powered brush hoe that targeted weeds present in the row. Frequencies of cultivation were at vegetative emergence of peanut (VE), 1 wk after VE (1wk), 2 wk after VE (2wk), sequential combinations of VE/1wk, VE/2wk, and VE/1wk/2wk. All plots were cultivated with a sweep cultivator to control weeds in row middles. The tine weeder tended to be easier to operate and performed more consistently than the brush hoe. Both implements performed best when initial cultivation was at VE. Delaying the initial cultivation reduced overall effectiveness. Plots with the best in-row weed control were hand-weeded once to control escapes and harvested for peanut yield. The best overall combination of weed control, minimal use of salvage hand-weeding, and maximum peanut yield resulted from sequential cultivation at VE/1wk using either the tine weeder or brush hoe, row middle sweep cultivation, and preharvest mowing.

El control de malezas en la producción de maní orgánico es difícil y costoso. La labranza con cultivadora de barrido entre hileras es efectiva, pero las malezas permanecen en la línea de siembra causando pérdidas en el rendimiento. Se realizaron ensayos de investigación en Ty Ty, GA para evaluar implementos y frecuencias de laboreo con el objetivo de mejorar el control de malezas en la línea de siembra en maní orgánico. Los implementos probados fueron una cultivadora de dientes y un azadón de cepillo motorizado que se dirigieron hacia las malezas presentes en la línea de siembra. Las frecuencias de laboreo fueron en la emergencia vegetativa del maní (VE), 1 semana después de VE (1wk), 2 semanas después de VE (2wk), combinaciones secuenciales de VE/1wk, VE/2wk y VE/1wk/2wk. Todas las parcelas fueron cultivadas con una cultivadora de barrido para controlar las malezas entre hileras. La cultivadora de dientes generalmente fue más fácil de operar y funcionó más consistentemente que el azadón de cepillo. Ambos implementos funcionaron mejor cuando el laboreo inicial fue en la etapa VE. El retraso del laboreo inicial redujo en general la efectividad. Las parcelas con el mejor control de malezas en la línea de siembra fueron deshierbadas manualmente una vez para controlar las malezas que escaparon al control mecánico y también para cosechar el maní. La mejor combinación entre control de malezas, uso mínimo de deshierba manual y el mayor rendimiento de maní se obtuvo con las siguientes acciones: cultivar secuencialmente en VE/1wk, usando ya sea la cultivadora de dientes o el azadón de cepillo; usar una cultivadora de barrido entre hileras; y hacer una chapia antes de la cosecha.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bond, W. and Grundy, A. C. 2001. Nonchemical weed management in organic farming systems. Weed Res. 41:383405.Google Scholar
Boyle, L. W. 1952. Factors to be integrated in the control of southern blight on peanut. Phytopathology 42:282.Google Scholar
Boyle, L. W. 1956. Fundamental concepts in the development of control measures for southern blight and root rot on peanut. Plant Dis. Rep. 40:661665.Google Scholar
Branch, W. D. 2005. Registration of ‘Georgia 04S’ peanut. Crop Sci. 45:16531654.Google Scholar
Bridges, D. C., Walker, R. H., McGuire, J. A., and Martin, N. R. 1984. Efficiency of chemical and mechanical methods for controlling weeds in peanuts (Arachis hypogaea). Weed Sci. 32:584591.Google Scholar
Colquhoun, J. and Bellinder, R. 1997. New Cultivation Tools for Mechanical Weed Control in Vegetables. IPM Fact Sheet 102FSNCT. Ithaca, NY Cornell University Cooperative Extension Service.Google Scholar
Dimitri, C. and Greene, C. 2002. Recent growth patterns in the U.S. organic foods market. USDA–Econ. Res. Ser. Agric. Info. Bull. No. 777. Available at http://www.ers.usda.gov/publications/aib777/aib777c.pdf. Accessed: September 3, 2011.Google Scholar
Gianessi, L. and Reigner, N. P. 2005. The outsourcing of organic crop production—research brief number 2. The Crop Life Foundation. http://www.croplifefoundation.org/Documents/Research%20Briefs/2%20Organic%20Outsourcing%201-18-05.pdf. Accessed: September 2, 2011.Google Scholar
Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybeans. Am. J. Alter. Agric. 5:114119.Google Scholar
Hammons, R. O. 1973. Early history and origin of the peanut. Pages 1745 in Peanuts—Culture and Uses. Stillwater, OK American Peanut Research Education Association.Google Scholar
Johnson, W. C. III and Mullinix, B. G. Jr. 2008. Potential weed management systems for organic peanut production. Peanut Sci. 35:6772.Google Scholar
Kurstjens, D. A., Perdok, U. D., and Goense, D. 2000. Selective uprooting by weed harrowing on sandy soils. Weed Res. 40:431447.Google Scholar
Ngouajio, M. and McGiffin, M. E. Jr. 2002. Going organic changes weed population dynamics. HortTechnology 12:590596.Google Scholar
Organic Farming Research Foundation. 2001. Final results of the third biennial national organic farmer's survey. August 18, 2001. http://ofrf.org/publications/pubs/3rdsurvey_results.pdf. Accessed: September 29, 2011.Google Scholar
[USDA] U.S. Department of Agriculture–National Agricultural Statistics Service. 2009. Farm Labor. Released May 22, 2009. http://usda.mannlib.cornell.edu/usda/nass/FarmLabo//2000s/2009/FarmLabo-05-22-2009.pdf. Accessed: September 27, 2011.Google Scholar
[USDA] U.S. Department of Agriculture–National Agricultural Statistics Service. 2010. Farm Labor. Released May 20, 2010. http://usda.mannlib.cornell.edu/usda/nass/FarmLabo//2010s/2010/FarmLabo-05-20-2010.pdf. Accessed: September 27, 2011.Google Scholar
Wann, D. Q., Tubbs, R. S., Johnson, W. C. III, Smith, A. R., Smith, N. B., and Culbreath, A. K. 2011. Cultivation frequency and duration effects on productivity and economics of peanut in organic management. Peanut Sci. 38:101110.CrossRefGoogle Scholar
Wilcut, J. W., Wehtje, G. R., and Walker, R. H. 1987. Economics of weed control in peanuts (Arachis hypogaea) with herbicides and cultivations. Weed Sci. 35:711715.Google Scholar
Winter, C. K. and Davis, S. F. 2007. Are organic foods healthier? CSA News 52:213.Google Scholar