Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T16:38:04.778Z Has data issue: false hasContentIssue false

Impact of Fallow Programs and Fumigants on Nutsedge (Cyperus spp.) Management in Plasticulture Tomato

Published online by Cambridge University Press:  20 January 2017

Cristiane Alves
Affiliation:
Horricultural Sciences Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL 33598
Andrew W. MacRae
Affiliation:
Horricultural Sciences Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL 33598
Clinton J. Hunnicut
Affiliation:
Horricultural Sciences Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL 33598
Tyler P. Jacoby
Affiliation:
Horricultural Sciences Department, University of Florida, Gulf Coast Research and Education Center (GCREC), Wimauma, FL 33598
Gregory E. MacDonald
Affiliation:
Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL 32611
Peter J. Dittmar*
Affiliation:
Horticultural Sciences Department, P.O. Box 110690, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected]

Abstract

With the loss of methyl bromide (MeBr) and high prices of alternatives, tomato growers are applying lower fumigant rates or adopting a reduced system. Without the broad-spectrum control provided by the complete fumigant system, a fallow weed program might be needed to avoid an increase in pest pressure with consecutive years of application of the reduced-fumigant system. Nutsedges are among the pests of interest due to their fast reproduction by underground structures and ability to spread and quickly infest a field. Field trials were conducted between February and December of 2011 in Balm, FL, to evaluate the impacts of fallow treatments, fumigants, and halosulfuron on nutsedge control. The trial design was a split–split plot with main, sub-, and subsubplots being fallow, fumigant, and herbicide treatment, respectively. Fallow treatments were spaced evenly throughout the fallow season and consisted of sequential combinations of cultivation (C) and/or glyphosate (G) applied at 2.24 kg ae ha−1; including: C, CC, G, GG, CG, GC, GCG, and NO (nontreated control). Fumigant treatments included a reduced-fumigant system of 1,3-dichloropropene plus chloropicrin 40:60 (1,3-D + pic) at 281 kg ha−1, a complete fumigant system of dimethyl disulfide plus chloropicrin 79:21 (DMDS + pic) at 545 kg ha−1, and no fumigant (NoFum). Herbicide treatments were either two POST applications of halosulfuron at 39 g ai ha−1 (Hal) or no halosulfuron (NoHal). In general, the fallow weed treatment GCG was the most effective in reducing nutsedge shoot emergence through the plastic mulch. When the reduced-fumigant system 1,3-D + pic was combined with GCG fallow treatment and halosulfuron (GCG:1,3-D + pic:Hal), no differences were found between this combination and the complete fumigant system DMDS + pic with halosulfuron and combined with CC, G, GG, CG, GC or GCG. This study shows the importance of adding a fallow weed program and halosulfuron to either a reduced or complete fumigation system to minimize the reproduction and growth of nutsedges.

Con la pérdida de methyl bromide (MeBr) y los altos precios de las alternativas, los productores de tomate están aplicando dosis más bajas de fumigante o adoptando un sistema reducido. Sin el control de amplio espectro que se obtiene con un sistema de fumigación completo, un programa de manejo de malezas con barbecho limpio podría ser requerido para evitar el incremento en la presión de esta plaga en los años consecutivos a la aplicación del sistema de fumigación reducida. Cyperus spp. está entre las plagas de interés debido a su rápida reproducción por medio de estructuras subterráneas y su habilidad de dispersarse y rápidamente infestar un campo. Se realizaron experimentos de campo entre Febrero y Diciembre de 2011 en Balm, FL, para evaluar los impactos de tratamientos de barbecho, fumigantes, y halosulfuron sobre el control de Cyperus spp. El diseño del experimento fue parcelas divididas en dos niveles siendo el barbecho, el fumigante y el tratamiento del herbicida la parcela principal, la subparcela y la sub-subparcela, respectivamente. Los tratamientos de barbecho fueron distribuidos en forma uniforme a lo largo de la temporada de barbecho y consistieron en combinaciones secuenciales de cultivo con rastra de discos (C) y/o glyphosate (G) aplicado a 2.24 kg ae ha−1; incluyendo: C, CC, G, GG, CG, GC, GCG, y NO (testigo no tratado). Los tratamientos de fumigantes incluyeron un sistema de fumigación reducida de 1,3-dichloropropene más chloropicrin 40:60 (1,3-D + pic) a 281 kg ha−1, un sistema de fumigación completa de dimethyl disulfide más chloropicrin 79:21 (DMDS + pic) a 545 kg ha−1, y sin fumigante (NoFum). Los tratamientos de herbicidas fueron dos aplicaciones POST de halosulfuron a 39 g ai ha−1 (Hal) o sin halosulfuron (NoHal). En general, el tratamiento de barbecho GCG fue el más efectivo en reducir la emergencia de plantas de Cyperus spp. a través de la cobertura plástica. Cuando el sistema de fumigación reducida 1,3 + pic fue combinado con el tratamiento de barbecho GCG y halosulfuron (GCG:1,3-D + pic:Hal), no se encontraron diferencias entre esta combinación y el sistema de fumigación completa DMDS + pic con halosulfuron y combinado con CC, G, GG, CG, GC o GCG. Este estudio muestra la importancia de agregar un programa de barbecho y halosulfuron a sistemas de fumigación completa o reducida para minimizar la reproducción y crecimiento de Cyperus spp.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akin, D. S. and Shaw, D. R. 2001. Purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) control in glyphosate tolerant soybean (Glycine max). Weed Technol. 15:564570.Google Scholar
Bailey, W. A., Wilson, H. P., and Hines, T. E. 2001. Influence of cultivation and herbicide programs on weed control and net returns in potato (Solanum tuberosum). Weed Technol. 15:654659.Google Scholar
Brecke, B. J., Stephenson, D. O. IV, and Unruh, J. B. 2005. Control of purple nutsedge (Cyperus rotundus) with herbicides and mowing. Weed Technol. 19:809814.Google Scholar
Csinos, A. S., Sumner, D. R., Johnson, W. C. III, Johnson, A. W., McPherson, R. M., and Dowler, C. C. 2000. Methyl bromide alternatives in tobacco, tomato, and pepper transplant production. Crop Prot. 19:3949.Google Scholar
Culpepper, A. S., Davis, A. L., and Webster, T. M. 2006. Methyl bromide alternatives being identified in Georgia. Pages 65-165-4 in Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction, Orlando, FL, November 6–9, 2006. Methyl Bromide Alternatives Outreach in cooperation with Crop Protection Coalition, US Environmental Protection Agency, and US Department of Agriculture. Available at: http://mbao.org/2006/06Proceedings/065CulpepperSMB2006-conferenceabstract.pdf. Accessed Febuary 15, 2012.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for pre-plant fumigation in soil. Phytopathology. 92:13371343.Google Scholar
Durigan, J. C. 2000. Integracao de metodos mecanico e quimico para o controle da tiririca (Cyperus rotundus L.). Cientifica. 28:87101.Google Scholar
Durigan, J. C., Timossi, P. C., and Correia, N. M. 2006. Integrated management of purple nutsedge on sugar-cane yield. Planta Daninha. 24:7781.Google Scholar
[EPA] Environmental Protection Agency. 2011. The Phaseout of Methyl Bromide. http://www.epa.gov/ozone/mbr/. Accessed: February 15, 2012.Google Scholar
Gilreath, J. P., Jones, J. P., and Overman, A. J. 1994. Soilborne pest control in mulched tomato with alternatives to methyl bromide. Proc. Fla. State Hortic. Soc. 107:156159.Google Scholar
Gilreath, J. P., Noling, J. W., and Santos, B. M. 2004. Methyl bromide alternatives for bell pepper (Capsicum annuum) and cucumber (Cucumis sativus) rotations. Crop Prot. 23:347351.CrossRefGoogle Scholar
Gilreath, J. P. and Santos, B. M. 2005. Purple nutsedge (Cyperus rotundus) control with fumigant and pebulate combinations in tomato. Weed Technol. 19:575579.Google Scholar
Hauser, E. W. 1962. Development of purple nutsedge under field conditions. Weeds. 10:315321.Google Scholar
Johnson, A. W., McCarter, S. M., Jaworski, C. A., and Williamson, R. E. 1979. Chemical control of nematodes and soil-borne plant-pathogenic fungi on cabbage transplants. J. Nematol. 11:138144.Google Scholar
Keeley, P. E. 1987. Interference and interaction of purple and yellow nutsedges (Cyperus rotundus and C. esculentus) with crops. Weed Technol. 1:7481.Google Scholar
Locascio, S. J., Gilreath, J. P., Dickson, D. W., Kucharek, T. A., Jones, J. P., and Noling, J. W. 1997. Fumigant alternatives to methyl bromide for polyethylene-mulched tomato. HortScience. 32:12081211.Google Scholar
MacRae, A., Noling, J., and Snodgrass, C. 2010. Maximizing the efficacy of soil fumigant applications for raised-bed plasticulture systems of Florida. http://edis.ifas.ufl.edu/pdffiles/HS/HS116900.pdf. Accessed: February 15, 2012.Google Scholar
Miles, J. E., Nishimoto, R. K., and Kuwabat, O. 1996. Diurnally alternating temperatures stimulate sprouting of purple nutsedge (Cyperus rotundus). tubers. Weed Sci. 44:122125.Google Scholar
Morales-Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1997. Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) vegetative growth and fruit yield. Weed Technol. 11:672676.Google Scholar
Ohr, H. D., Sims, J. J., Grech, N. M., Becker, J. O., and McGiffen, M. E. Jr. 1996. Methyl iodide, an ozone-safe alternative to methyl bromide as a soil fumigant. Plant Dis. 80:731735.Google Scholar
Olson, S. M., Stall, W. M., Vallad, G. E., Webb, S. E., Smith, S. A., Simonne, E. H., McAvoy, E. J., Santos, B. M., and Ozores-Hampton, M. 2011. Tomato Production in Florida. Pages 295316 in Olson, S. M. and Santos, B. M., eds. Vegetable Production Handbook for Florida 2011–2012. Gainesville, Florida UF/IFAS. Qiao, K., Y. Zhu, H. Wang, X. Ji, and K. Wang. 2012. 2012Effects of 1,3-dichloropropene as a methyl bromide alternative for management of nematode, soil-borne disease, and weed in ginger (Zingiber officinale) crops in China. Crop Prot. 32:71–75.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., von Hulten, M., and Siham, M. N. 2006. Effects of mulch types and concentrations of 1,3-dichloropropene plus chloropicrin on fumigant retention and nutsedge control. Hort. Technol. 16:637640.Google Scholar
Schroeder, J., Kenney, M. J., Thomas, S. H., and Murray, L. 1994. Yellow nutsedge response to southern root-knot nematodes, chile peppers and metolachlor. Weed Sci. 42:534540.Google Scholar
Schroeder, J., Thomas, S. H., and Murray, L. 1993. Yellow and purple nutsedge and chile peppers host southern root-knot nematode. Weed Sci. 41:150156.Google Scholar
Smith, E. V. and Fick, G. L. 1937. Nut grass eradication studies: I. Relation of the life history of nut grass, Cyperus rotundus L., to possible methods of control. J. Am. Soc. Agron. 29:10071013.Google Scholar
Taylorson, R. B. 1967. Seasonal variation in sprouting and available carbohydrate in yellow nutsedge tubers. Weeds. 15:2224.Google Scholar
[UGA] University of Georgia. 2008. Vegetable Update 2008. Slide Presentation. http://www.gaweed.com/slides/Vegetable-update-2008/index.html. Accessed: February 15, 2012.Google Scholar
[USDA] U.S. Department of Agriculture. 1991. United States Standards for Grades of Fresh Tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed: May 25, 2012.Google Scholar
[USDA] U.S. Department of Agriculture. 2012. Vegetables: 2011 Summary. Washington, DC National Agricultural Statistic Service. 89 p.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Purple nutsedge (Cyperus rotundus) management in corn (Zea mays) and cotton (Gossypium hirsutum) rotations. Weed Technol. 11:543548.Google Scholar
Webster, T. M., Csinos, A. S., Johnson, A. W., Dowler, C. C., Sumner, D. R., and Fery, R. L. 2001. Methyl bromide alternatives in a bell pepper-squash rotation. Crop Prot. 20:605614.Google Scholar
Webster, T. M., Grey, T. L., Davis, J. W., and Culpepper, A. S. 2008. Glyphosate hinders purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) tuber production. Weed Sci. 56:735742.Google Scholar
Zandstra, B. H. and Nishimoto, R. K. 1977. Movement and activity of glyphosate in purple nutsedge. Weed Sci. 25:268274.Google Scholar