Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:31:18.676Z Has data issue: false hasContentIssue false

Impact of Drift Rates of Imazethapyr and Low Carrier Volume on Non-Clearfield Rice

Published online by Cambridge University Press:  20 January 2017

Justin B. Hensley
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
Eric P. Webster*
Affiliation:
School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803
David C. Blouin
Affiliation:
Department of Experimental Statistics, Louisiana State University, 45 Agricultural Administration Building, Baton Rouge, LA 70803
Dustin L. Harrell
Affiliation:
Louisiana State University Agricultural Center Rice Research Station, 1373 Caffey Road, Rayne, LA 70578
Jason A. Bond
Affiliation:
Delta Research and Extension Center, Mississippi Agricultural and Forestry Experiment Station, Stoneville, MS
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted near Crowley, LA, in 2005 through 2007 to evaluate the effects of simulated herbicide drift on ‘Cocodrie’ rice. Each application was made with the spray volume varying proportionally to herbicide dosage based on a constant spray volume of 234 L ha−1 and an imazethapyr rate of 70 g ai ha−1. The 6.3%, 4.4 g ha−1, herbicide rate was applied at a spray volume of 15 L ha−1 and the 12.5%, 8.7 g ha−1, herbicide rate was applied at a spray volume of 29 L ha−1. An application of imazethapyr at one-tiller, panicle differentiation (PD), and boot resulted in increased crop injury compared with the nontreated rice. The most injury observed occurred on rice treated at the one-tiller timing. Imazethapyr at one-tiller, PD, and boot reduced plant height at harvest and primary and total (primary plus ratoon) crop yield, with the greatest reduction in primary crop yield resulting from imazethapyr applied at boot. Imazethapyr did not affect rice treated at primary crop maturity.

Estudios de campo se realizaron cerca de Crowley, Louisiana del 2005 al 2007 para evaluar los efectos de la deriva de herbicida simulada sobre arroz ‘Cocodrie’. Cada aplicación se hizo con un volumen que varió proporcionalmente a la dosis del herbicida con base en un volumen constante de 234 L ha-1 y una dosis de imazethapyr de 70 g ai ha-1. La dosis de herbicida de 6.3%, 4.4 g ha-1, fue aplicada a un volumen de 15 L ha-1, y la de 12.5%, 8.7 g ha-1, se aplicó con un volumen de 29 L ha-1. Una aplicación de imazethapyr a 1-retoño, diferenciación de la panícula (PD), y engrosamiento de la vaina, resultó en un aumento en el daño del cultivo en comparación con el plantas no tratadas. El mayor daño observado ocurrió en arroz tratado en la etapa de 1-retoño. Imazethapyr a 1-retoño, PD y engrosamiento de la vaina redujo la altura de la planta al momento de la cosecha y el rendimiento primario y total (primario más soca), con una reducción mayor en el rendimiento primario como resultado del imazethapyr aplicado durante el engrosamiento de la vaina. El imazethapyr no afectó el arroz tratado en la madurez del cultivo primario.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Claassen, M. M., Stahlman, P. W., Geier, P. W., Regehr, D. L., Duncan, S. R., and Heer, W. F. 2003. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr and sethoxydim. Weed Technol. 17:261265.Google Scholar
Banks, P. A. and Schroeder, J. 2002. Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol. 16:833837.Google Scholar
Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.Google Scholar
Bond, J. A., Griffin, J. L., Ellis, J. M., Linscombe, S. D., and Williams, B. J. 2006. Corn and rice response to simulated drift of imazethapyr plus imazapyr. Weed Technol. 20:113117.CrossRefGoogle Scholar
Bouse, L. F., Carlton, J. B., and Merkle, M. G. 1976. Spray recovery from nozzles designed to reduce drift. Weed Sci. 24:361365.Google Scholar
Crabbe, R. S., McCooeye, M., and Mickle, R. E. 1994. The influence of atmospheric stability on wind drift from ultra-low-volume aerial forest spray applications. J. Appl. Meteorol. 33:500507.2.0.CO;2>CrossRefGoogle Scholar
Croughan, T. P. 1994. Application of tissue culture techniques to the development of herbicide resistant rice. Louisiana Ag. 3:2526.Google Scholar
Davis, B., Scott, R. C., Norsworthy, J. K., and Gbur, E. 2011. Response of rice (Oryza sativa) to low rates of glyphosate and glufosinate. Weed Technol. 25:198203.Google Scholar
Ellis, J. M., Griffin, J. L., and Jones, C. A. 2002. Effects of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol. 16:587592.Google Scholar
Everitt, J. D. and Keeling, J. W. 2009. Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol. 23:503506.Google Scholar
Groth, D., Hollier, C., and Rush, C. 2009. Disease management. Pages 7292. In Saichuk, J., ed. Louisiana Rice Production Handbook. Baton Rouge, LA Louisiana State University AgCenter Publ. 2321.Google Scholar
Hanks, J. E. 1995. Effects of drift retardant adjuvants on spray droplet size of water and paraffinic oil applied at ultralow volume. Weed Technol. 9:380384.Google Scholar
Hensley, J. B. 2009. Effects of simulated drift of glyphosate, imazethapyr, glufosinate, and imazamox to non-transgenic rice. Ph.D Dissertation. Baton Rouge, LA Louisiana State University. 124 p.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.CrossRefGoogle Scholar
Jones, E. J., Hanks, J. E., Willis, G. D., and Mack, R. E. 2007. Effect of two polysaccharide adjuvants on glyphosate spray droplet size and efficacy. Weed Technol. 21:171174.Google Scholar
Kurtz, M. E. and Street, J. E. 2003. Response of rice (Oryza sativa) to glyphosate applied to simulate drift. Weed Technol. 17:234238.Google Scholar
[LSUA] Louisiana State University AgCenter. 2010. 2010 Louisiana rice acreage by variety summary. http://www.lsuagcenter.com/MCMS/RelatedFiles/%7B6F229309-CAEE-4C45-9D7D-999076B489B2%7D/La+Rice+Acreage+All+Types+2010.pdf. Accessed: September 14, 2011.Google Scholar
Marple, M. E., Al-Khatib, K., and Peterson, D. E. 2008. Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol. 22:609614.Google Scholar
Muhitch, M. J., Shaner, D. L., and Stidham, M. A. 1987. Imidazolinones and acetohydroxyacid synthase from higher plants. Plant Physiol. 83:451456.Google Scholar
[NASS] National Agricultural Statistics Service. 2011a. Crop Production 2010 Summary. http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2011_new_format.pdf. Accessed: September 14, 2011.Google Scholar
NASS. 2011b. Crop Value 2010 Summary. http://usda.mannlib.cornell.edu/usda/current/CropValuSu/CropValuSu-02-16-2011.pdf. Accessed: September 14, 2011.Google Scholar
Nuyttens, D., Baetens, K., De Schampheleire, M., and Sonck, B. 2007. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 97:333345.Google Scholar
Pellerin, K. J., Webster, E. P., Zhang, W., and Blouin, D. C. 2004. Potential use of imazethapyr mixtures in drill-seeded imidazolinone-resistant rice. Weed Technol. 18:10371042.Google Scholar
Ramsdale, B. K., Messersmith, C. G., and Nalewaja, J. D. 2003. Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol. 17:589598.CrossRefGoogle Scholar
Roider, C. A., Griffin, J. L., Harrison, S. A., and Jones, C. A. 2008. Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol. 22:453458.Google Scholar
Sawchuck, J. W., Van Acker, R. C., and Friesen, L. R. 2006. Influence of a range of dosages of MCPA, glyphosate, and thifensulfuron∶tribenuron (2 ∶ 1) on conventional canola (Brassica napus) and white bean (Phaseolus vulgaris) growth and yield. Weed Technol. 20:184197.CrossRefGoogle Scholar
[SDTF] Spray Drift Task Force. 1997. A Summary of Aerial Application Studies. http://www.agdrift.com/PDF_FILES/Aerial.pdf. Accessed: September 14, 2011.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 8991.Google Scholar
Shaner, D. L. 1991. Physiological effects of the imidazolinone herbicides. Pages 129137 in Shaner, D. L., and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL CRC Press.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Shaw, D. R., Ratnayake, S., and Smith, C. A. 1990. Effects of herbicide application timing on johnsongrass (Sorghum halepense) and pitted morningglory (Ipomoea lacunosa) control. Weed Technol. 4:900903.Google Scholar
Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39:428434.Google Scholar
Stidham, M. A. and Singh, B. K. 1991. Imidazolinone–acetohydroxyacid synthase interactions. Pages 7289 in Shaner, D. L., and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL CRC Press.Google Scholar
Thistle, H. W. 2004. Meteorological concepts in the drift of pesticides. Pages 156162 in Proceedings of International Conference on Pesticide Application for Drift Management. Waikoloa, HI. Wash. State. Univ. http://pep.wsu.edu/Drift04/pdf/proceedings/pg156-162_Thistle.pdf. Accessed February 23, 2012.Google Scholar
VanGessel, M. J. and Johnson, Q. R. 2005. Evaluating drift control agents to reduce short distance movement and effect on herbicide performance. Weed Technol. 19:7885.CrossRefGoogle Scholar
Webster, E. P. and Masson, J. A. 2001. Acetolactate synthase–inhibiting herbicides on imidazolinone-tolerant rice. Weed Sci. 49:652657.Google Scholar