Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T01:09:56.486Z Has data issue: false hasContentIssue false

Growth of Purple Nutsedge (Cyperus rotundus) in Response to Interference with Direct-Seeded Rice

Published online by Cambridge University Press:  20 January 2017

Bhagirath S. Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
Jhoana Opeña
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: [email protected]

Abstract

The biology of purple nutsedge was studied by growing it alone and in competition with 12 and 24 rice plants in a pot experiment. Compared with the weedy plants grown alone, competition from rice reduced purple nutsedge leaf number, shoot number, tuber production rate, and leaf biomass. At 10 wk after planting, interference from 12 and 24 rice plants reduced purple nutsedge leaf area by 79 and 86%, respectively, compared with weedy plants grown without rice interference. On the same date, purple nutsedge aboveground shoot biomass was 26.8 g plant−1 without interference, whereas in interference with 12 and 24 rice plants, purple nutsedge produced aboveground biomass of 4.8 and 2.2 g plant−1, respectively. A total of 95 tubers plant−1 were produced by purple nutsedge when grown alone. Growth with 12 and 24 rice plants reduced tuber production to 33 and 17 tubers plant−1, respectively. Without interference, purple nutsedge produced 40 g plant−1 of total biomass of tuber plus root plus rhizome, whereas in interference with 12 and 24 rice plants, purple nutsedge produced 14 and 5 g plant−1 of total belowground biomass, respectively.

La biología de Cyperus rotundus fue estudiada sembrando plantas solas y en competencia con 12 y 24 plantas de arroz en un experimento en macetas. Comparada con malezas sembradas solas, la competencia debido al arroz redujo el número de hojas y brotes de C. rotundus, así como la tasa de producción de tubérculos y la biomasa de la hoja. A las 10 semanas después de la siembra, la interferencia de 12 y 24 plantas de arroz redujo el área de la hoja de C. rotundus en 79 y 86%, respectivamente, comparada con plantas sin la interferencia del arroz. En la misma fecha, la biomasa aérea de los brotes de C. rotundus fue de 26.8 g planta−1 sin interferencia, mientras que con interferencia de 12 y 24 plantas de arroz, C. rotundus produjo una biomasa aérea de 4.8 y 2.2 g planta−1, respectivamente. Un total de 95 tubérculos planta−1 se produjeron cuando C. rotundus se sembró sin competencia. La siembra con 12 y 24 plantas de arroz redujo la producción de tubérculos a 33 y 17 planta−1, respectivamente. Sin interferencia, esta maleza produjo 40 g planta−1 de biomasa total del tubérculo más raíz más rizoma, mientras que con interferencia de 12 y 24 plantas de arroz, C. rotundus produjo 14 y 5 g planta−1 de biomasa total de tejido subterráneo, respectivamente.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bangarwa, S. K., Norsworthy, J. K., Jha, P., and Malik, M. 2008. Purple nutsedge (Cyperus rotundus) management in an organic production system. Weed Sci. 56:606613.Google Scholar
Carey, V. F. III., Smith, R. J. Jr., and Talbert, R. E. 1994. Interference durations of bearded sprangletop (Leptochloa fascicularis) in rice (Oryza sativa). Weed Sci. 42:180183.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26:113.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105:221262.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011. Phenotypic plasticity of Chinese sprangletop (Leptochloa chinensis) in competition with seeded rice. Weed Technol. 25:652658.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121:105115.Google Scholar
Chavez, R. C. and Moody, K. 1984. Ecotypic variation in Cyperus rotundus . Pages 123126 in Proceedings of the Symposium in Weed Science. BIOTROP Special Publication 24. Bogor, Indonesia Regional Center for Tropical Biology.Google Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
GenStat 8.0. 2005. GenStat Release 8 Reference Manual. Oxford, U.K. VSN International. 343 p.Google Scholar
Gibson, K. D. and Fischer, A. J. 2001. Relative growth and photosynthetic response of water-seeded rice and Echinochloa oryzoides (Ard.) Fritsch to shade. Int. J. Pest Manage. 47:305309.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu University of Hawaii Press. 609 p.Google Scholar
Lemerle, D., Cousens, R. D., Gill, G. S., Peltzer, S. J., Moerkerk, M., Murphy, C. E., Collins, D., and Cullis, B. R. 2004. Reliability of higher seeding rates of wheat for increased competitiveness with weeds in low rainfall environments. J. Agric. Sci. 142:395409.Google Scholar
Mahajan, G. and Chauhan, B. S. 2011. Weed management in direct drilled rice. Indian Farming April:69.Google Scholar
Okafor, L. I. and De Datta, S. K. 1976. Competition between upland rice and purple nutsedge for nitrogen, moisture and light. Weed Sci. 24:4346.Google Scholar
Olsen, J., Kristensen, L., and Weiner, J. 2006. Influence of sowing density and spatial pattern of spring wheat (Triticum aestivum) on the suppression of different weed species. Weed Biol. Manag. 6:165173.Google Scholar
Patterson, D. T. 1982. Shading responses of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 30:2530.Google Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., and Mortimer, A. M. 2007. Weed management in direct-seeded rice. Adv. Agron. 93:153255.Google Scholar
Rao, J. S. 1968. Studies of the development of tubers in nutgrass and their starch contents at different depths of soil. Madras Agric. J. 55:1823.Google Scholar
Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., and Sihilling, D. G. 1997. Effects of shading on the growth of nutsedge (Cyperus spp.). Weed Sci. 45:670673.Google Scholar
Stoller, E. W. and Sweet, R. D. 1987. Biology and life cycle of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol. 1:6673.Google Scholar