Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T07:19:46.397Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Common Waterhemp (Amaranthus rudis) Confirmed in Texas

Published online by Cambridge University Press:  20 January 2017

G. G. Light
Affiliation:
Department of Plant and Soil Science, Box 42122, Texas Tech University, Lubbock, TX 79409-2122
M. Y. Mohammed
Affiliation:
Borlaug Institute for International Agriculture—Texas A&M University System, 2477 TAMU, College Station, TX 77843-2477
P. A. Dotray
Affiliation:
Department of Plant and Soil Science, Texas Tech University, Texas AgriLife Research, and Texas AgriLife Extension, Box 42122 Lubbock, TX 79409-2122
J. M. Chandler
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843-2474
R. J. Wright*
Affiliation:
Department of Plant and Soil Science, Texas Tech University and Texas AgriLife Research, Box 42122, Lubbock, TX 79409
*
Corresponding author's E-mail: [email protected]

Abstract

Glyphosate-resistant Amaranthus species are a recognized risk to U.S. agriculture. With affected cropland exceeding 1.2 million ha, this epidemic is particularly pertinent to agricultural regions that utilize an intensive glyphosate-based management program to control weedy pests. Before 2006, Texas had no identified glyphosate-resistant populations. Two independent common waterhemp populations exhibiting poor control by glyphosate were identified in Wharton County and Fort Bend County, TX in 2006 and 2008, respectively. The objective of the present research was to characterize the level of glyphosate resistance (50% lethal dose [LD50] and 50% reduction in growth rate [GR50]) in each population. Resistance levels in four putatively glyphosate-resistant common waterhemp biotypes selected from these two populations were compared with confirmed glyphosate-resistant and -susceptible common waterhemp populations under greenhouse conditions. The LD50 value for the susceptible population (736 g ae ha−1) was equivalent to the 0.9× labeled rate of glyphosate, whereas the putatively resistant lines exhibited a broad range of resistance with LD50 values ranging from 3.5 to 59.7× the labeled rate of glyphosate. The GR50 value for the most resistant line was 2.5-fold greater than the susceptible biotype (317 g ae ha−1 of glyphosate). These results confirm the first documented case of a glyphosate-resistant weed species in Texas.

Las especies de Amaranthus resistentes al glifosato son un riesgo reconocido en la agricultura de los Estados Unidos. Con una superficie de cultivo afectada que excede 1.2 millones de hectáreas, esta epidemia es particularmente pertinente a las regiones agrícolas que utilizan un programa intensivo de manejo basado en glifosato para el control de maleza. Antes de 2006, Texas no había identificado poblaciones resistentes al glifosato. En el condado de Wharton, Texas en 2006 y 2008 se identificaron dos poblaciones independientes de Amaranthus rudis, las cuales exhibieron poco control a la aplicación de glifosato. El objetivo de la presente investigación fue caracterizar el nivel de resistencia a glifosato (LD50 y GR50) en cada población. De esas dos poblaciones de Amaranthus rudis presumiblemente resistentes al glifosato, fueron comparados cuatro biotipos para confirmar resistencia y susceptibilidad a glifosato, en condiciones de invernadero. El valor LD50 para la población susceptible (736 g ea ha−1) fue equivalente a 0.9X la dosis recomendada de glifosato, mientras las líneas presumiblemente resistentes exhibieron un amplio rango de resistencia con valores LD50 que variaron de 3.5 a 59.7X la dosis recomendada de glifosato. El valor GR50 para las líneas más resistentes fue 2.5 veces mayor que el biotipo susceptible (317 g ea ha−1 de glifosato). Estos resultados confirman el primer caso documentado de una especie de maleza resistente a glifosato en Texas.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2009. Monsanto Biotechnology Trait Acres: Fiscal Years 1996–2009. http://www.monsanto.com/investors/documents/2009/q4_biotech_acres.pdf. Accessed: March 2, 2011.Google Scholar
Blair-Kerth, L. K., Dotray, P. A., Keeling, J. W., Gannaway, J. R., Oliver, M. J., and Quisenberry, J. E. 2001. Tolerance of transformed cotton to glufosinate. Weed Sci. 49:375380.CrossRefGoogle Scholar
Buhler, D. D., Kohler, K. A., and Thompson, R. L. 2001. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 15:170176.CrossRefGoogle Scholar
Coetzer, E., Al-Khatib, K., and Loughin, T. M. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 49:813.Google Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.Google Scholar
Culpepper, A. S., York, A. C., Roberts, P., and Whitaker, J. R. 2009. Weed control and crop response to glufosinate applied to ‘PHY 485 WRF’ cotton. Weed Technol. 23:356362.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., and Horak, M. J. 2001a. Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Sci. 49:732737.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001b. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.CrossRefGoogle Scholar
Gaines, T. A., Zhang, W., Wang, D., et al. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. U. S. A. 107:10291034.Google Scholar
Guo, P. and Al-Khatib, K. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Sci. 51:329333.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.CrossRefGoogle Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/. Accessed: March 2, 2011.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.Google Scholar
Mager, H. J., Young, B. G., and Preece, J. E. 2006. Characterization of compensatory weed growth. Weed Sci. 54:274281.Google Scholar
Mahan, J. R., Dotray, P. A., Light, G. G., and Dawson, K. R. 2006. Thermal dependence of bioengineered glufosinate tolerance in cotton. Weed Sci. 54:15.Google Scholar
[NASS] National Agricultural Statistics Service. 1997. Agricultural Chemical Usage 1996 Field Crops Summary. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/1990s/1997/AgriChemUsFC-09-03-1997.txt. Accessed: March 2, 2011.Google Scholar
[NASS] National Agricultural Statistics Service. 2006. Agricultural Chemical Usage 2005 Field Crops Summary. http://usda.mannlib.cornell.edu/usda/nass/AgriChemUsFC/2000s/2006/AgriChemUsFC-05-17-2006.pdf. Accessed: March 2, 2011.Google Scholar
[NASS] National Agricultural Statistics Service. 2010. Acreage. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000. Accessed: March 2, 2011.Google Scholar
[NRCS] National Resources Conservation Service. 2011. Plants Database: Amaranthus L. http://plants.usda.gov/java/profile?symbol=AMARA. Accessed: March 2, 2011.Google Scholar
Nolte, S. A. and Young, B. G. 2002. Efficacy and economic return on investment for conventional and herbicide-resistant soybean (Glycine max). Weed Technol. 16:388395.Google Scholar
Owen, M. D. K. 2008. Weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 64:377387.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.Google Scholar
Smith, D. A. and Hallett, S. G. 2006. Variable response of common waterhemp (Amaranthus rudis) populations and individuals to glyphosate. Weed Sci. 20:466471.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common waterhemp (Amaranthus rudis) interference in corn. Weed. Sci. 52:359364.Google Scholar
Steckel, L. E., Sprague, C. L., and Hager, A. G. 2002. Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol. 16:755761.CrossRefGoogle Scholar
[TDA] Texas Department of Agriculture. 2006. Ag Week Fact Sheet: Texas Packs a Punch. http://www.agr.state.tx.us/agr/media/media_render/0,1460,1848_17053_14354_0,00.htm. Accessed: March 2, 2011.Google Scholar
Trucco, F., Zheng, D., Woodyard, A. J., Walter, J. R., Tatum, T. C., Rayburn, A. L., and Tranel, P. J. 2007. Nonhybrid progeny from crosses of dioecious amaranths: implications for gene-flow research. Weed Sci. 55:119122.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis . Weed Sci. 47:538543.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2002. Amaranthus tuberculatus (Mq ex DC) J.S. Sauer: potential for selection of glyphosate resistance. Pages 630633 in Proceedings of the 13th Annual Australian Weed Conference. Perth, Australia Plant Protection Society of WA.Google Scholar