Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T10:22:01.806Z Has data issue: false hasContentIssue false

Glufosinate Efficacy as Influenced by Carrier Water pH, Hardness, Foliar Fertilizer, and Ammonium Sulfate

Published online by Cambridge University Press:  23 February 2017

Pratap Devkota*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected]

Abstract

Carrier water quality is an important consideration for herbicide efficacy. Effect of carrier water pH (4, 6.5, or 9) and coapplied Zn or Mn foliar fertilizer was evaluated on glufosinate efficacy for horseweed and Palmer amaranth control in the field. Greenhouse studies were conducted to evaluate the effect of: (1) carrier water pH, foliar fertilizer (Zn, Mn, or without fertilizer), and ammonium sulfate (AMS) (at 0 or 2.5% v/v); and (2) carrier water hardness (0 to 1,000 mg L−1) and AMS (at 0 or 2.5% v/v) on glufosinate efficacy for giant ragweed, horseweed, and Palmer amaranth control. In a 2014 field study, control, plant density reduction, and biomass reduction were at least 8% greater for horseweed and at least 14% greater for Palmer amaranth when glufosinate was applied at carrier water pH 4 compared with pH 9. Glufosinate efficacy was at least 10 and 17% greater for giant ragweed and Palmer amaranth control, respectively, with carrier water pH 4 compared with pH 9 in the greenhouse. In the greenhouse studies, coapplied Zn or Mn fertilizer had no effect on glufosinate efficacy. Increased carrier water hardness from 0 to 1,000 mg L−1 negatively influenced glufosinate efficacy and resulted in 20 and 17% lesser control and biomass reduction, respectively, on giant ragweed or Palmer amaranth. Use of AMS enhanced glufosinate efficacy on giant ragweed control in both greenhouse studies, whereas only the Palmer amaranth control was enhanced in the water hardness study. Horseweed control with glufosinate as affected by carrier water pH, hardness, or AMS remained unaffected in both greenhouse studies. Carrier water at alkaline pH or hardness > 200 mg L−1 has potential to reduce glufosinate efficacy. Therefore, carrier water free of hardness cations and at acidic condition (pH = 4 to 6.5) should be considered for optimum glufosinate efficacy.

La calidad del agua como medio de aplicación es una consideración importante para la eficacia del herbicida. Se evaluó el efecto del pH del agua (4, 6.5, ó 9) y la aplicación simultáneamente de fertilizante foliar de Zn o Mn sobre la eficacia del glufosinate sobre el control de Conyza canadensis y Amaranthus palmeri en el campo. Estudios de invernadero fueron realizados para evaluar el efecto de: (1) el pH del agua, el fertilizante foliar (Zn, Mn, o sin fertilizante), y ammonium sulfate (AMS) (a 0 ó 2.5% v/v); y (2) la dureza del agua (0 a 1,000 mg L−1) y AMS (a 0 ó 2.5% v/v) sobre la eficacia de glufosinate para el control de Ambrosia trifida, C. canadensis, y A. palmeri. En el estudio de campo en 2014, la reducción en la densidad de plantas, y la reducción de la biomasa fueron al menos 8% mayores para C. canadensis y al menos 14% mayores para A. palmeri cuando se aplicó glufosinate con agua con pH 4 al compararse con pH 9. La eficacia de glufosinate para el control de A. trifida y A. palmeri fue al menos 10 y 17% mayor, respectivamente, con agua con pH 4 al compararse con pH 9, en el invernadero. En los estudios de invernadero, la aplicación simultánea de fertilizante de Zn o Mn no tuvo ningún efecto sobre la eficacia de glufosinate. El aumentar la dureza del agua de 0 a 1,000 mg L−1 influenció en forma negativa la eficacia de glufosinate y resultó en 20 y 17% menos control y reducción de biomasa, respectivamente, para A. trifida o A. palmeri. El uso de AMS mejoró la eficacia de glufosinate para el control de A. trifida en ambos estudios de invernadero, mientras que el control de A. palmeri solamente mejoró en el estudio de la dureza del agua. El control de C. canadensis con glufosinate no fue afectado por el pH y la dureza del agua, o el uso de AMS en ambos estudios de invernadero. El agua a pH alcalino o con dureza >200 mg L−1 tiene el potencial de reducir la eficacia de glufosinate. Por esta razón, se debe considerar el uso de agua libre de cationes que confieran dureza y que tenga pH ácido (pH = 4 a 6.5) para obtener una eficacia óptima con glufosinate.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jason Bond, Mississippi State University.

References

Literature Cited

Abouziena, HF, Elmergawi, RA, Sharma, S, Omar, AA, Singh, M (2009) Zinc antagonizes glyphosate on yellow nutsedge (Cyperus esculentus). Weed Sci 57: 1620 Google Scholar
Bellinder, RR, Hatzios, KK, Wilson, HP (1985) Mode of action investigations with the herbicides HOE-39866 and SC-0224. Weed Sci 33: 779785 Google Scholar
Bernards, ML, Thelen, KD, Penner, D (2005) Glyphosate efficacy is antagonized by manganese. Weed Technol 19: 2734 Google Scholar
Buhler, DD, Burnside, OC (1983) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31: 163169 Google Scholar
Chahal, GS, Johnson, WG (2012) Influence of glyphosate or glufosinate combinations with growth regulator herbicides and other agrochemicals in controlling glyphosate-resistant weeds. Weed Technol 26: 638643 Google Scholar
Coetzer, E, Al-Khatib, K (2001) Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Sci 49: 454459 Google Scholar
Coetzer, E, Al-Khatib, K, Loughin, TM (2001) Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci 49: 813 Google Scholar
Craigmyle, BD, Ellis, JM, Bradley, KW (2013) Influence of herbicide program on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol 27: 7884 Google Scholar
Devkota, P, Spaunhorst, DJ, Johnson, WG (2016a) Influence of carrier water pH, hardness, foliar fertilizer, and ammonium sulfate on mesotrione efficacy. Weed Technol 30: 617628 Google Scholar
Devkota, P, Whitford, F, Johnson, WG (2016b) Influence of spray solution temperature and holding duration on weed control with premixed glyphosate and dicamba formulation. Weed Technol 30: 116122 Google Scholar
Green, JM, Cahill, WR (2003) Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Technol 17: 338345 Google Scholar
Green, JM, Hale, T (2005) Increasing the biological activity of weak acid herbicides by increasing and decreasing the pH of the spray mixture. J ASTM Int 2: 6271 Google Scholar
Hoss, NE, Al-Khatib, K, Peterson, DE, Loughin, TM (2003) Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci 51: 110117 Google Scholar
Kaur, S, Sandell, LD, Lindquist, JL, Jhala, AJ (2014) Glyphosate-resistant giant ragweed (Ambrosia trifida) control in glufosinate-resistant soybean. Weed Technol 28: 569577 Google Scholar
Maschhoff, JR, Hart, SE, Baldwin, JL (2000) Effect of ammonium sulfate on the efficacy, absorption, and translocation of glufosinate. Weed Sci 48: 26 Google Scholar
Mueller, TC, Main, CL, Thompson, MA, Steckel, LE (2006) Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol 20: 164171 Google Scholar
Nalewaja, JD, Matysiak, R (1991) Salt antagonism of glyphosate. Weed Sci 39: 622628 Google Scholar
Nalewaja, JD, Matysiak, R (1992) Species differ in response to adjuvants with glyphosate. Weed Technol 6: 561566 Google Scholar
Nalewaja, JD, Matysiak, R (1993) Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol 7: 154158 Google Scholar
Nurse, RE, Hamill, AS, Kells, JJ, Sikkema, PH (2008) Annual weed control may be improved when AMS is added to below-label glyphosate doses in glyphosate-tolerant maize (Zea mays L.). Crop Prot 27: 452458 Google Scholar
O’Sullivan, PA, O’Donovan, JT, Hamman, WM (1981) Influence of non-ionic surfactants, ammonium sulfate, and nozzle effects on glyphosate efficacy. Can J Plant Sci 61: 391400 Google Scholar
Pline, WA, Wu, J, Hatzios, KK (1999) Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Sci 47: 636643 Google Scholar
Pratt, D, Kells, JJ, Penner, J (2003) Substitutes for ammonium sulfate as additives with glufosate and glufosinate. Weed Technol 17: 576581 Google Scholar
Ramsey, RJL, Stephenson, GR, Hall, JC (2002) Effect of relative humidity on the uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pestic Biochem Physiol 73: 18 Google Scholar
Ridley, SM, McNally, SE (1985) Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to the herbicide. Plant Sci 39: 3136 Google Scholar
Roskamp, JM, Chahal, GS, Johnson, WG (2013a) The effect of cations and ammonium sulfate on the efficacy of dicamba and 2,4-D. Weed Technol 27: 7277 Google Scholar
Roskamp, JM, Turco, R, Bischoff, M, Johnson, WG (2013b) The influence of carrier water pH and hardness on saflufenacil efficacy and solubility. Weed Technol 27: 527533 Google Scholar
Salisbury, CD, Chandler, JM, Merkle, MG (1991) Ammonium sulfate enhancement of glyphosate and SC-0224 control of johnsongrass (Sorghum halepense). Weed Technol 5: 1821 Google Scholar
Sarmah, AK, Sabadie, J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50: 62536265 Google Scholar
Shilling, DG, Haller, WT (1989) Interaction effects of diluent pH and calcium content of glyphosate activity on Panicum repens L. (torpedo grass). Weed Res 29: 441448 Google Scholar
Smith, AM, Born, WHV (1992) Ammonium sulfate increases efficacy of sethoxydim through increased absorption and translocation. Weed Sci 40: 351358 Google Scholar
Soltani, N, Nurse, RE, Robinson, DE, Sikkema, PH (2011) Effect of ammonium sulfate and water hardness on glyphosate and glufosinate activity in corn. Can J Plant Sci 91: 10531059 Google Scholar
Stahlman, PW, Phillips, WM (1979) Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci 27: 3841 Google Scholar
Tharp, BE, Schabenberger, O, Kells, JJ (1999) Response of annual weed species to glufosinate and glyphosate. Weed Technol 13: 542547 Google Scholar
Thelen, KD, Jackson, EP, Penner, D (1995) The basis for the hard-water antagonism of glyphosate activity. Weed Sci 43: 541548 Google Scholar
Wanamarta, G, Penner, D (1989) Foliar absorption of herbicides. Rev Weed Sci 4: 215231 Google Scholar
Wanamarta, G, Penner, D, Kells, JJ (1989) The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci 37: 400404 Google Scholar
Wills, GD, McWhorter, CG (1985) Effect of inorganic salts on the toxicity and translocation of glyphosate and MSMA in purple nutsedge (Cyperus rotundus). Weed Sci 33: 755761 Google Scholar
Woznica, Z, Nalewaja, JD, Messersmith, CG, Milkowski, P (2003) Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technol 17: 582588 Google Scholar
Young, BG, Knepp, AW, Wax, LM, Hart, SE (2003) Glyphosate translocation in common lambsquarters (Chenopodium album) and velvetleaf (Abutilon theophrasti) in response to ammonium sulfate. Weed Sci 51: 151156 Google Scholar
Zollinger, RK, Nalewaja, JD, Peterson, DE, Young, BG (2010) Effect of hard water and ammonium sulfate on weak acid herbicide activity. ASTM J. Vol. 7, No. 6. Paper ID JAI102869Google Scholar