Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T10:55:56.989Z Has data issue: false hasContentIssue false

Experimental Parameters Used to Study Pesticide Degradation in Soil

Published online by Cambridge University Press:  12 June 2017

Michael R. Blumhorst*
Affiliation:
EPL Bio-Analytical Services, Inc., Harristown, IL 62537

Abstract

Characterization of pesticide degradation in soil is an important component in determining the environmental impact of agriculturally-applied pesticides. Several techniques currently are being used to generate these data, but small-scale laboratory studies remain one of the most effective, cost-efficient mechanisms of evaluating pesticide behavior in soil. With small-scale studies, many different environmental factors can be incorporated into the experimental design, and with the use of 14C-labeled material, these studies (often referred to as soil degradation or soil metabolism studies) provide information on test substance persistence, degradation, volatilization, and mineralization. Care must be exercised, however, in selecting the experimental parameters to be used because of the potential adverse or artificial effects on the soil system.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anonymous. 1993. Pesticide Reregistration Rejection Rate Analysis: Environmental Fate. U.S. Environmental Protection Agency, EPA 738-R-93-010, p. 6577.Google Scholar
2. Atlas, R. M. 1984. Microbiology: Fundamentals and Applications. Macmillan Publishing Co., New York, p. 352354.Google Scholar
3. Bartha, R. and Pramer, D. 1965. Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. 100:6870.Google Scholar
4. Basham, G. W. and Lavy, T. L. 1987. Microbial and photolytic dissipation of imazaquin in soil, Weed Sci. 35:865870.Google Scholar
5. Blumhorst, M. R. and Weber, J. B. 1992. Cyanazine dissipation as influenced by soil properties. J. Agric. Food Chem. 40:894897.CrossRefGoogle Scholar
6. Blumhorst, M. R. and Weber, J. B. 1994. Chemical versus microbial degradation of cyanazine and atrazine in soils. Pestic. Sci. 42:7984.Google Scholar
7. Braverman, M. P., Dusky, J. A., Locascio, S. J., and Hornsby, A. G. 1990. Sorption and degradation of thiobencarb in three Florida soils. Weed Sci. 38:583588.Google Scholar
8. Cantwell, J. R., Liebl, R. A. and Slife, F. W. 1989. Biodegradation characteristics of imazaquin and imazethapyr. Weed Sci. 37:815819.CrossRefGoogle Scholar
9. Coleman, D. C. and Fry, B., eds. 1991. Carbon Isotope Techniques. 1991. Academic Press, Inc. San Diego, CA. 258 p.Google Scholar
10. Corbin, F. T. and Swisher, B. A. 1986. Radioisotope techniques. p. 265276 in Camper, N. D., ed. Research Methods in Weed Science, 3rd ed. Southern Weed Science Society, Champaign, IL.Google Scholar
11. Fredrickson, D. R. and Shea, P. J. 1986. Effect of soil pH on degradation. movement, and plant uptake of chlorsulfuron. Weed Sci. 34:328332.Google Scholar
12. Goetz, A. J., Lavy, T. L., and Gbur, E. E. Jr. 1990. Degradation and field persistence of imazethapyr. Weed Sci. 38:421428.Google Scholar
13. Hamaker, J. W. 1972. Decomposition: Quantitative aspects. p. 253340 in Goring, C.A.I. and Hamaker, J. W. eds. Organic Chemicals in the Soil Environment. Marcel Dekker, New York.Google Scholar
14. Hitch, R. K. 1982. Pesticide Assessment Guidelines. Subdivision N. U.S. Environmental Protection Agency, PB83-153973.Google Scholar
15. Jordan, L. S., Farmer, W. J. Goodin, J. R., and Day, B. E. 1970. Volatilization and non-biological degradation of triazine herbicides in vitro and in soils. Residue Rev. 32:267286.Google Scholar
16. Joshi, M. M., Brown, H. M., and Romesser, J. A. 1985. Degradation of chlorsulfuron by soil microorganisms. Weed Sci. 33:888893.Google Scholar
17. Konrad, J. G., Chesters, G., and Armstrong, D. E. 1969. Soil degradation of malathion, a phosphorodithioate insecticide. Soil Sci. Soc. Am. Proc. 33:259262.Google Scholar
18. Laskowski, D. A. 1992. Do guidelines provide meaningful data for evaluation of pesticide exposure to living organisms. Paper No. 95, American Chemical Society Meeting, Agrochemicals Division, Washington. DC, August 1992.Google Scholar
19. Laskowski, D. A., Goring, C. A. I., McCall, P. J., and Swann, R. L. 1982. Terrestrial environment. p. 198235 in Conway, R. A., ed. Environmental Risk Analysis for Chemicals. Van Nostrand Rheinhold, New York.Google Scholar
20. Laskowski, D. A., Swann, R. L., McCall, P. J., and Bidlack, H. D. 1983. Soil degradation studies. Residue Rev. 85:139147.Google Scholar
21. Lawrence, E. G., Skipper, H. D., Gooden, D. T., Zublena, J. P., and Struble, J. E. 1990. Persistence of carbamothioate herbicides in soils pretreated with butylate. Weed Sci. 38:194197.Google Scholar
22. Loux, M. M. and Reese, K. D. 1992. Effect of soil pH on adsorption and persistence of imazaquin. Weed Sci. 40:490496.CrossRefGoogle Scholar
23. Majka, J. T. and Lavy, T. L. 1977. Adsorption, mobility and degradation of cyanazine and diuron in soils. Weed Sci. 25:401406.CrossRefGoogle Scholar
24. Marinucci, A. C. and Bartha, R. 1979. Apparatus for monitoring the mineralization of volatile 14C-labeled compounds. Appl. Environ. Microbiol. 38:10201022.Google Scholar
25. McCormick, L. L. and Hiltbold, A. E. 1966. Microbiological decomposition of atrazine and diuron in soil. Weed Sci. 14:7782.Google Scholar
26. McCusker, V. W., Skipper, H. D., Zublena, J. P., and Gooden, D. T. 1988. Biodegradation of carbamothioates in butylate-history soils. Weed Sci. 36:818823.CrossRefGoogle Scholar
27. Moorman, T. B. 1988. Populations of EPTC-degrading microorganisms in soils with accelerated rates of EPTC degradation. Weed Sci. 36:96101.CrossRefGoogle Scholar
28. Mueller, T. C. and Banks, P. A. 1991. Flurtamone adsorption and mobility in three Georgia soils. Weed Sci. 39:275279.Google Scholar
29. Mueller, T. C., Banks, P. A., and Steen, W. C. 1991. Microbial degradation of flurtamone in three Georgia soils. Weed Sci. 39:270274.Google Scholar
30. Mueller, T. C., Moorman, T. B., and Snipes, C. E. 1992. Effect of concentration, sorption, and microbial biomass on degradation of the herbicide fluometuron in surface and subsurface soils. J. Agric. Food Chem. 40:25172521.Google Scholar
31. Negre, M., Gennan, M., Raimondo, E., Celi, L., Trevisan, M., and Capri, E. 1992. Alachlor dissipation in soil as influenced by formulation and soil moisture. J. Agric. Food Chem. 40:10711075.Google Scholar
32. Parvez, H., Reich, A. R., Lucas-Reich, S., and Parvez, S., eds. 1988. Progress in HPLC, Volume 3. VSP. Utrecht, The Netherlands. 210 p.Google Scholar
33. Pramer, D. and Bartha, R. 1972. Preparation and processing of soil samples for biodegradation studies. Environ. Letters 2:217224.Google Scholar
34. Renner, K. A., Meggitt, W. F., and Penner, D. 1988. Effect of soil pH on imazaquin and imazethapyr adsorption to soil and phytotoxicity to corn (Zed mays). Weed Sci. 36:7883.Google Scholar
35. Reyes, C. C. and Zimdahl, R. L. 1989. Mathematical description of trifluralin degradation in soil. Weed Sci. 37:604608.Google Scholar
36. Simon, L., Spiteller, M., and Wallnofer, P. R. 1992. Metabolism of fenamiphos in 16 soils originating from different geographical areas. J. Agric. Food Chem. 40:312317.Google Scholar
37. Skipper, H. D., Mueller, J. G., Ward, V. L., and Wagner, S. C. 1986. Microbial degradation of herbicides. p. 457475 in Camper, N. D., ed. Research Methods in Weed Science, 3rd ed. Southern Weed Science Society, Champaign, IL.Google Scholar
38. Skipper, H. D., Murdock, E. C., Gooden, D. T., Zublena, J. P., and Amakiri, M. A. 1986. Enhanced herbicide biodegradation in South Carolina soils previously treated with butylate. Weed Sci. 34:558563.Google Scholar
39. Smith, A. E. and Aubin, A. J. 1992. Degradation of the sulfonylurea herbicide [14C]amidosulfuron (HOE 075032) in Saskatchewan soils under laboratory conditions. J. Agric. Food Chem. 40:25002504.Google Scholar
40. Somasundaram, L. and Coats, J. R., eds. 1991. Pesticide Transformation Products, Fate and Significance in the Environment. 1991. American Chemical Society Symposium Series 459. Washington, DC. 288 p.Google Scholar
41. Steel, R.G.D. and Torrie, J. H. 1980. Linear Regression. p. 239269 in Principles and Procedures of Statistics, 2nd ed. McGraw-Hill Book Co., New York.Google Scholar
42. Sun, H. L., Sheets, T. J., and Corbin, F. T. 1990. Transformation of alachlor by microbial communities. Weed Sci. 38:416420.CrossRefGoogle Scholar
43. Thirunarayanan, K., Zimdahl, R. L., and Smika, D. E. 1985. Chlorsulfuron adsorption and degradation in soil. Weed Sci. 33:558563.Google Scholar
44. Weber, J. B. 1970. Mechanisms of adsorption of s-triazines by clay colloids and factors affecting plant availability. Residue Rev. 32:93130.Google Scholar
45. Weber, J. B. and Coble, H. D. 1968. Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. J. Agric. Food Chem. 16:475478.Google Scholar
46. Weete, J. D. 1986. Herbicide analysis by chromatographic techniques. p. 219245 in Camper, N. D., ed. Research Methods in Weed Science, 3rd ed. Southern Weed Science Society, Champaign, IL.Google Scholar
47. Zimdahl, R. L., Cranmer, B. K., and Stroup, W. W. 1994. Use of empirical equations to describe dissipation of metribuzin and pendimethalin. Weed Sci. 42:241248.Google Scholar